

Basic Terms: పొరాధమిక నిబంధనలు

BASICS OF ELECTRICAL SAFETY AND PRACTICAL PROCEDURES FOR ELECTRICAL AND PERSONAL SAFETY MEASURES

ఎలక్ట్రానిక్ భద్రత మరియు పొరాధమిక్ ప్రక్రియల యొక్క పొరాధమికాలు
విద్యుత్ మరియు వ్యక్తిగత భద్రతా చర్యలకు

Electric charge is created when the Electrons accumulate at any device. A positive charge is created when there is a deficiency of Electrons and when there is an excess of electrons a negative charge is created.

The negative charge creation makes Negative potential whereas positive charge creation makes Positive potential.

The flow of charge is known as Electricity and it flows from Positive potential to Negative potential.

Please note that the electrons flow from negative potential to positive potential but the direction of flow of electricity is from positive to negative potential. The conventional electricity flows opposite to the Flow of Electrons.

The Voltage is the difference of Charge and is also known as Potential difference.

The Current is the rate at which the Charge flows.

The Resistance is the opposition to the Flow of charge by an element in the path of flow which is also known as Circuit.

An analogy is made with Flow of water from a height. As water flows from a greater height to a lower height so the Charge flows from Higher potential to lower potential.

ఎలక్ట్రాన్ ఏ పరికరంలోనైనా సేకరించినప్పుడు ఎలక్ట్రిక్ చార్జ్ సృష్టించబడుతుంది. ఎలక్ట్రాన్ లోపం ఉన్నప్పుడు ఒక అనుకూల చార్జ్ సృష్టించబడుతుంది మరియు ప్రతికూల చార్జ్ సృష్టించబడిన ఎలక్ట్రాన్ కంటే ఎక్కువ ఉన్నప్పుడు.

ప్రతికూల చార్జ్ సృష్టి ప్రతికూల సామర్థ్యాన్ని చేస్తుంది, అయితే అనుకూల చార్జ్ సృష్టి సానుకూల సామర్థ్యాన్ని చేస్తుంది.

చార్జ్ యొక్క ప్రవాహాన్ని విద్యుత్తుగా పిలుస్తారు మరియు ఇది నెగిటివ్ సంభావ్యతకు సానుకూల సామర్థ్యాన్ని ఏర్పరుస్తుంది.

ఎలక్ట్రాన్ ప్రతికూల సంభావ్యత నుండి సానుకూల శక్తికి ప్రవహిస్తాయి కానీ విద్యుత్తు ప్రవాహం యొక్క దిశ సానుకూల నుండి ప్రతికూల సామర్థ్యాన్ని సూచిస్తుంది. ఎలక్ట్రాన్ ప్రవాహానికి వ్యతిరేక విద్యుత్ ప్రవాహం ఉంటుంది.

వోల్టేజ్ చార్జ్ యొక్క వ్యతాసం మరియు సంభావ్య తేడాగా కూడా పిలువబడుతుంది.

ప్రస్తుతము చార్జ్ ప్రవహిస్తున్న రేటు.

రెసిస్టెన్స్ అనేది ప్రవాహం మార్గంలో ఒక మూలకం ద్వారా చార్జ్ యొక్క ఫోకు వ్యతిరేకత, ఇది సర్వ్యాధా కూడా పిలువబడుతుంది.

ఎత్తు నుండి నీటి ప్రవాహంతో ఒక సారూప్యత తయారు చేయబడింది. ఎక్కువ ఎత్తు నుండి తక్కువ ఎత్తు వరకు నీరు ప్రవహిస్తున్నందున, హెచ్చు సంభావ్యత నుండి చార్జ్ తగ్గిపోతుంది.

UNITS OF CHARGE, VOLTAGE, CURRENT AND RESISTANCE

చార్జ్, వోల్టేజ్, కరెంట్ అండ్ రిజిస్ట్రెన్స్ యూనిట్లు

Charge is measured in Coulombs

చార్జ్ కులోమెట్ర్ లో కొలుస్తారు

Voltage is measured in Volts

వోల్టేజ్ వోల్టులో కొలుస్తారు

Resistance is measured in Ohms

ప్రతిఘటన ఓమ్స్ కొలుస్తారు

Ohms Law- Is the basic Law of Electricity flow and is as below:

ఒంమ్స్ లా- విద్యుత్ ప్రవాహం యొక్క పేరాధమిక చట్టం మరియు కీరింద ఉన్నది:

$$V=I \times R$$

Where V is Voltage in Volts, I is Current in Amperes and R is Resistance in Ohms. Thus a Current of 1 Ampere flowing through a device of 1 Ohms will generate a Voltage of 1 V.

Basics of AC & DC. Terms such as positive cycle, negative cycle, Frequency, Time period, RMS, Peak value , peak to peak, instantaneous values,

Electricity flows in two ways: either in an **alternating current (AC)** or in a **direct current (DC)**. As already discussed the Electricity or “current” is nothing but the movement of electrons through a conductor, like a wire. The difference between AC and DC lies in the direction in which the electrons flow. In DC, the electrons flow steadily in a single direction, or “forward.” In AC, electrons keep switching directions, sometimes going “forward” and then going “backward.”

Alternating current is the best way to transmit electricity over large distances.

ఎక్కడో వోల్టోన్ వోల్టేజ్, ఇ అంపిరెన్ లో ప్రస్తుతము మరియు ఆర్ ఒమోన్ రెసిష్చన్ ఉంది. 1 ఒంల యొక్క పరికరం ద్వారా ప్రవహించే మొదటి 1 అంపియర్ 1 V యొక్క వోల్టేజ్సు ఉత్పత్తి చేస్తుంది.

AC & DC యొక్క చేసిక్క. ధనాత్మక చక్రం, ప్రతికూల చక్రం, ఫీర్కెన్సీ, కాల వ్యవధి, RMS, పీక్ విలువ, శిఖరం, తక్షణ విలువలు,

విద్యుత్ రెండు మాధాల్లో ప్రవహిస్తుంది: ఒక ప్రత్యామ్నాయ ప్రవాహం (AC) లేదా ఒక ప్రత్యక్ష కరెంట్ (DC) లో. ఇప్పటికే చరించినట్లుగా విద్యుత్ లేదా "కరెంట్" అనేది ఒక కండక్టర్ ద్వారా ఎలెక్ట్రాన్ కదలిక, వైర్ వంటిది. ఎలెక్ట్రాన్ ప్రవహించే దిశలో AC మరియు DC మధ్య వ్యత్యాసం ఉంటుంది. DC లో, ఎలెక్ట్రాన్ ఒక దిశలో క్రమంగా ప్రవహిస్తాయి లేదా "ముందుకు." AC లో, ఎలెక్ట్రాన్ దిశలను మారుస్తాయి, కొన్నిసార్లు "ముందుకు" వెళ్లి "వెనుకకు" వెళ్లాయి.ప్రత్యామ్నాయ

విద్యుత్ ప్రవాహం అనేది విద్యుత్ దూరాన్ని ఒదిలీ చేయడానికి ఉత్సమ మార్గం.

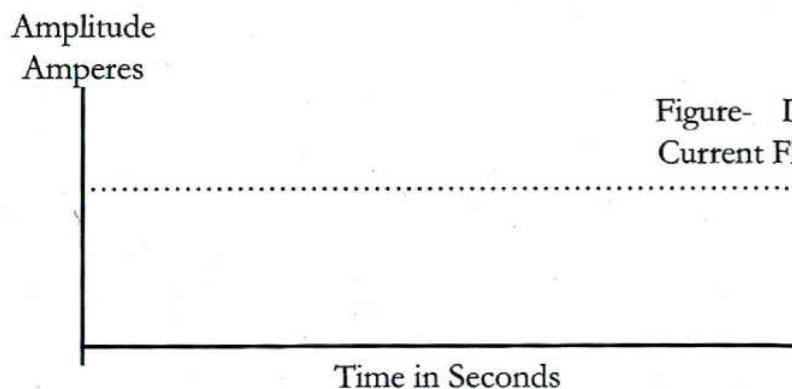


Figure- DC Current where the Current Flows in one direction only.

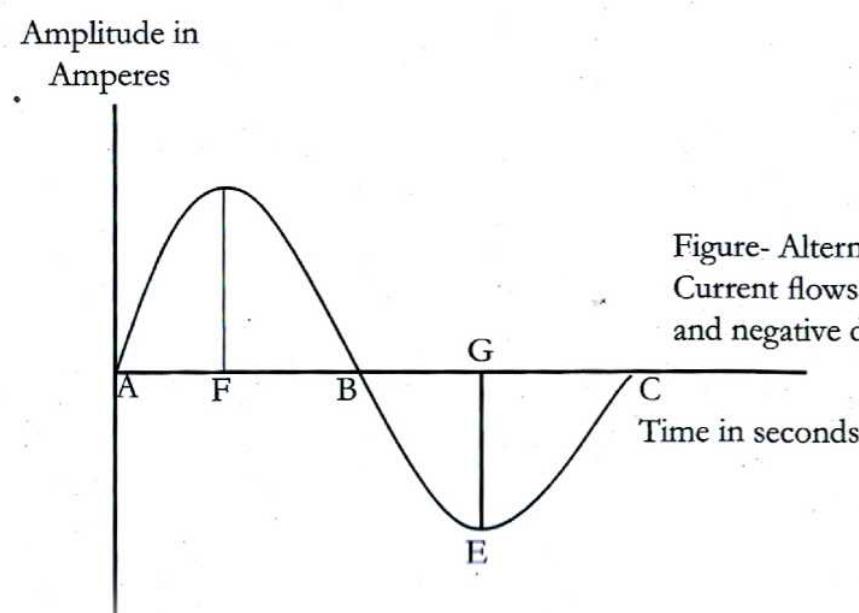


Figure- Alternating Current (AC) Current flows in both positive and negative directions.

In AC current flows in both the directions forward and reverse. ADB is in positive direction whereas BEC is in negative directions.

ABD is positive cycle whereas BEF is negative cycle. In AC thus one complete cycle is made up of one negative and one positive cycle.

The Time to complete one complete Cycle is known as Time period.

Frequency is the number of cycles it completes in 1 Seconds. The unit of time period is Seconds and Frequency is Hertz. One cycle in one second is known as 1 Hertz.

Our domestic Power is AC Power and works at 50 Hertz meaning that it completes 50 Cycles in one 1 Seconds. #

The maximum amplitude in one direction is the peak value (DF and GE) and the value from maximum to minimum value is Peak to Peak Value. (DE+GE)

RMS or Root Mean Square Value- This is the AC current value which will have the same heating effect as if a DC Current passing through a device will have.

రెండు వ్యతిరేక దిశలలో AC కరెంట్ ప్రవాహాలలో రివర్స్ ముందుకు వస్తుంది. ADB అనుకూల దిశలో ఉంటుంది, BEC ప్రతికూల దిశలో ఉంటుంది. BEF ప్రతికూల చక్రం అయితే ABD సానుకూల చక్రం. AC లో ఒక పూర్తి చక్రం ఒక ప్రతికూల మరియు ఒక సానుకూల చక్రంతో రూపొందించబడింది. ఒక పూర్తి చక్రం పూర్తి సమయం సమయం వ్యవధి అని పిలుస్తారు. ఫీర్కెఫ్స్ నే 1 సెకండ్లలో పూర్తయ్యి

చక్కరాల సంఖ్య. సమయం యొక్క వ్యవధి సెకండ్స్ మరియు ఫురీక్స్ప్యూన్స్ పెర్చ్చ్చి. ఒక సెకనులో ఒక చక్రం 1 పెర్చ్చ్చి అంటారు. మా దేశీయ శక్తి AC శక్తి మరియు పనిచేస్తుంది 50 పెర్చ్చ్చి అది పూర్తి అని 50 సైకిల్స్ ఒక 1 సెకనుల. # ఒక దిశలో గరిష్ట విస్తరణ పీక్ విలువ (DF మరియు GE) మరియు గరిష్టంగా కనిష్ట విలువకు విలువ పీక్ టు పీక్ వేల్యా. (DE + GE) RMS లేదా రూట్ మీన్ స్క్వేర్ విలువ- ఈ డిసి ప్రస్తుత విలువ, ఒక డిసిసి కరెంట్ పాసింగ్ ఒక పరికరాన్ని కలిగి ఉంటే అదే వేడి ప్రభావాన్ని కలిగి ఉంటుంది.

The relation between Peak Value and RMS value is given by the Following equation:

పీక్ విలువ మరియు RMS విలువ మధ్య సంబంధం కీరింది సమీకరణం ద్వారా

ఇవ్వబడింది:

$$I_{rms} = I_0 / \sqrt{2}$$

Where I_{rms} is RMS value of the Current and I_0 is peak value of the current. Similar relationship holds for Voltage. In domestic Power we have 240 VAC. This means we have V_{rms} as 240 V whereas the Peak Voltage will be $V_{rms} \times \sqrt{2} = 340$ V and the peak to peak will be $340 \times 2 = 680$ V.

ఇర్స్ని ప్రస్తుతము యొక్క RMS విలువ మరియు ప్రస్తుతము యొక్క అగ్ర విలువ. ఇలాంటి సంబంధం వోల్టేజ్ కొరకు కలిగి ఉంది. దేశీయ శక్తిలో 240 VAC ఉంది. దీని అర్ధం మేము 240 V గా V_{rms} కలిగి ఉన్నట్టయితే పీక్ వోల్టేజ్ $VRMS \times \sqrt{2} = 340$ V గా ఉంటుంది మరియు శిఖరానికి $340 \times 2 = 680$ V ఉంటుంది.

INSULATORS, CONDUCTORS AND SEMICONDUCTOR

వేరేవేరులు, వ్యాపారులు మరియు సెమీకండక్షర్

- Conductors:** Materials that can allow current to flow through it freely are called good conductors or simply conductors. These materials have free electrons that can move easily and thus allow charge to flow freely.- Examples are Iron, Copper, Steel, Aluminium etc.
 - ❖ All metals are good conductor of electricity. However some metals exceptions and are not good conductors of electricity and these are Manganese and Mercury.
- Insulators:** Materials that do not allow current to flow through it freely are called bad conductors or simply Insulators. These materials do have free electrons that can move easily and thus do not allow charge to flow freely.- Examples are Wood, Earth, Plastic etc.
 - ❖ All non metals are bad conductor of electricity. However some non metals are exceptions and are good conductors of electricity (Graphite is one example of a non metal which is a good conductor of electricity).

- కండక్షర్స్: ప్రస్తుత ద్వారా ప్రవహించే ప్రవాహాన్ని ఉచితంగా అనుమతించే పదార్థాలు మంచి

కండక్టర్లు లేదా వాహకాలు అని పిలుస్తారు. ఈ పదార్థాలకు ఉచిత ఎలక్ట్రోన్సు సులభంగా ఉంటాయి, అందుచే చార్జ్ ఉచితంగా స్వేచ్ఛగా ప్రవహిస్తుంది.- ఉదాహరణలు పరన్, రాగి, పీల్, అల్యూమినియం మొదలైనవి.

❖ అన్ని లోహాలు విద్యుత్ మంచి కండక్టర్. అయితే కొన్ని లోహాల మినహాయింపులు మరియు విద్యుత్ మంచి వాహకాలు కావు మరియు ఇవి మాంగనీస్ మరియు మెర్క్యూరీ. • అవాహకాలు: ప్రస్తుత ద్వారా ప్రవహించే అనుమతించని పదార్థాలు స్వేచ్ఛగా చెడ్డ కండక్టర్లు లేదా కేవలం ఇన్స్టెటర్న్ అంటారు. ఈ పదార్థాలకు ఉచిత ఎలక్ట్రోన్సు సులభంగా ఉంటాయి, అందుచే చార్జ్ ఉచితంగా ప్రవహిస్తుంది.- ఉదాహరణలు వుడ్, ఎర్ల్, షాప్సీక్ మొదలైనవి.

❖ అన్ని కాని లోహాలు విద్యుత్తు యొక్క చెడు కండక్టర్. అయినప్పటికీ కొన్ని కాని లోహాల మినహాయింపులు మరియు మంచి కండక్టర్ ఒక విద్యుత్ ప్రఫోరిటు అనేది ఒక ఉదాహరణ 01 ఒక మెటల్ కాని $whit h$ మంచి వాహకం 01 విద్యుత్ ఉంది.

• **Semiconductors: Semiconductors** are crystalline or amorphous solids which a resistance which is lower than have non metal but higher than metal for conducting electricity and their resistance decreases as their temperature increases, which is opposite to that of a metal. Finally, their conducting properties may be altered in useful ways by the deliberate, controlled introduction of impurities ("doping") into the crystal structure, which lowers its resistance but also permits the creation of semiconductor junctions between differently-doped regions of the extrinsic semiconductor crystal. The behaviour of charge carriers which include electrons, ions and electron holes at these junctions is the basis of diodes, transistors and all modern electronics.

• **సెమీకండక్టర్స్:** సెమీకండక్టర్స్ స్పటికాన్ లేదా నిరాకార ఘనపదార్థాలు, ఇవి మెటల్ కాని వాటి కంచే తక్కువగా ఉండటం కానీ విద్యుత్తు నిర్వహించడం కోసం మెటల్ కంచే తక్కువగా ఉండటం మరియు వాటి ఉప్పోగ్రథ పెరగడం వంటి వాటి తగ్గుదల తగ్గుతుంది, ఇది ఒక మెటలుకు వ్యతిరేకంగా ఉంటుంది. చివరగా, వారి ప్రయోగాత్మక లక్షణాలను కీరిష్ట నిర్మాణంలోకి మలినాలతో ("డోపింగ్") ఉచ్చేశపూర్వక, నియంత్రిత పరిచయం ద్వారా ఉపయోగకరమైన విధాలుగా మార్పువచ్చు, ఇది దాని నిరోధకతను తగ్గిస్తుంది, కానీ బాహ్య సెమీకండక్టర్ యొక్క భిన్నంగా-డోఫ్ ప్రాంతాల మధ్య సెమీకండక్టర్ జంక్షన్లను సృష్టించడం కూడా అనుమతిస్తుంది కీరిష్ట. ఎలెక్ట్రోన్సు, అయిన్లు మరియు ఈ జంక్షన్లలో ఎలెక్ట్రోన్సు రంధ్రాలు కలిగివున్న చార్జ్ వాహకాల ప్రవర్తన, దయోద్దు, టరానిప్పర్లు మరియు అన్ని ఆధునిక ఎలక్ట్రోనిక్సు ఆధారంగా ఉంటుంది.

❖ Semiconductor devices can display a range of useful properties such as passing current more easily in one direction than the other, showing variable resistance, and sensitivity to light or heat. Because the electrical properties of a semiconductor material can be modified by doping, or by the application of electrical fields or light, devices made from semiconductors can be used for amplification, switching, and energy conversion.

❖ సెమీకండక్టర్ పరికరాలు వేరొకదాని కంచే ఒక దిశలో మరింత సులువుగా

ఉత్తీర్ణమవుతాయి, వేరియబుల్ నిరోధకత మరియు కాంతి లేదా వేడికి సున్నితత్వం వంటివి ఉపయోగకరమైన లక్షణాలను ప్రదర్శిస్తాయి. ఒక సెమీకండక్షర్ పదార్థం యొక్క విద్యుత్ లక్షణాలు డోపింగ్ ద్వారా లేదా విద్యుత్ రంగాలు లేదా కాంతి యొక్క అఫికేషన్ ద్వారా సవరించబడతాయి, సెమీకండక్షర్ నుంచి తయారు చేయబడిన పరికరాలు విస్తరణ, స్థితిచీంగ్ మరియు శక్తి మార్పిడి కోసం ఉపయోగించబడతాయి.

DIFFERENT TYPE OF ELECTRICAL CABLES AND THEIR SPECIFICATIONS

ఎలక్ట్రిక్ కాబుల్స్ మరియు వారి ప్రత్యేకతలు వివిధ రకం

Wire is a single electrical conductor, whereas a cable is a group of wires surrounded in sheathing.

Whether indoors or outdoors, proper wire and cable installation is of paramount importance - ensuring a smooth electricity supply, as well as passing electrical inspections. Each wire and cable needs to be installed carefully, from the fuse box to the outlets, fixtures and appliances. The Standard IS : 1255 - 1983 Indian Standard code for installation and maintenance of power cables up to and including 33 KV and national electrical rules and local building codes regulate the manner of installation and the types of wires and cables for various electrical applications.

Some factors that will affect your choice of electrical wiring include color, label information and applications. The information printed on the wire covering is all that you need to choose the correct wire for your home. Here's some detailed information on the various features of electrical wire, which will help you choose the correct composition:

వైర్ ఒక విద్యుత్ వాహకము, అయితే ఒక కేబుల్ పీటింగ్ లో పుండే తీగల సమూహం.

ఇంణ్లో లేదా అవుట్లోర్స్, సరైన వైర్ మరియు కేబుల్ ఇన్సులేషన్ అత్యంత ప్రాముఖ్యత కలిగినది - ఒక మృదువైన విద్యుత్ సరఫరా, అలాగే ఎలక్ట్రిక్ ఇన్సులేషన్ పాస్ అవుతున్నట్లు. ప్రతి తీగ మరియు కేబుల్ ఫ్యాజ్ పెట్టే నుండి అవుట్లు, ఉపకరణాలు మరియు ఉపకరణాల నుండి జాగ్రత్తగా అమర్చాలి. షాండర్డ్ IS: 1255 - 1983 33 కి.వి. మరియు జాతీయ విద్యుత్ నియమాలు మరియు షానిక భవనం కోఫ్టర్ సహా, విద్యుత్ కేబుల్స్ యొక్క సంషోధన మరియు నిర్వహణ కోసం ఇండియన్ షాండర్డ్ కోడ్, వివిధ విద్యుత్ అనువర్తనాలకు సంషోధన యొక్క పద్ధతిని మరియు తీగలు మరియు తంతులు రకాలను నియంత్రిస్తాయి.

విద్యుత్ వైరింగ్ మీ ఎంపిక ప్రభావితం చేసే కొన్ని కారకాలు రంగు, లేబుల్ సమాచారం మరియు అఫికేషన్లు ఉన్నాయి. వైర్ కవరింగ్ మీద ముద్దరించిన సమాచారం మీ ఇంటికి సరైన వైర్ ఎంచుకోవాలిన అవసరం ఉంది. ఇక్కడ మీరు సరైన కూర్చును ఎంచుకునేలా చేసే ఎలక్ట్రిక్ వైర్ యొక్క వివిధ లక్షణాలపై కొన్ని వివరణాత్మక సమాచారం ఉంది:

- Size of Wires:** Each application requires a certain wire size for installation, and the right size for a specific application is determined by the wire gauge. Sizing of wire is done by the American wire gauge system. Common wire sizes are 10, 12 and 14 - a higher number means a smaller wire size, and affects the amount of power it can carry. For example, a low-voltage lamp cord with 10 Amps will require 18-gauge wire, while service panels or subpanels with 100 Amps will require 2-gauge wire.

1. తీగ పరిమాణము: ప్రతి దరఖాస్తు అవసరం. సంప్రాపన కొరకు కొన్ని తీగ పరిమాణము, మరియు ఖచ్చితమైన దరఖాస్తు కొరకు సరైన పరిమాణము వైర్ గేజ్ ద్వారా నిర్ణయించబడుతుంది. వైర్ యొక్క పరిమాణాన్ని అమెరికన్ వైర్ గేజ్ సిస్టం నిర్వహిస్తుంది. సాధారణ తీగ పరిమాణాలు 10, 12 మరియు 14 ఉన్నాయి - అధిక సంఖ్యలో చిన్న వైర్ పరిమాణం అంటే, మరియు అది తీసుకునే అధికారాన్ని ప్రభావితం చేస్తుంది. ఉదాహరణకు, 10 ఆంపోన్ తక్కువ-వోల్టేజ్ లాంప్ తీరాడు 18-గేజ్ వైర్ అవసరమవుతుంది, అదే సమయంలో 100 పట్టీలు కలిగిన సర్పీన్ ప్యానెల్లు లేదా ఉపప్రాణలు 2-గేజ్ వైర్ అవసరం.

2. **Wire Lettering:** The letters THHN, THWN, THW and XHHN represent the main insulation types of individual wires. These letters depict the following NEC requirements:

2. వైర్ లెటర్డ్యింగ్: THHN, THWN, THW మరియు XHHN అక్షరాలు వ్యక్తిగత తీగలు యొక్క ప్రధాన ఇన్సులేషన్ రకాలను సూచిస్తాయి. ఈ ఉత్సర్గాలు ఈ కీరింది NEC అవసరాలను వర్ణిస్తాయి:

- ❖ T — Thermoplastic insulation
- ❖ H — Heat resistance
- ❖ HH - High heat resistance (up to 194°F)
- ❖ W — Suitable for wet locations
- ❖ N - Nylon coating, resistant to damage by oil or gas
- ❖ X - Synthetic polymer that is flame-resistant

3. **Types of Wires** - There are mainly 5 types of wire:

❖ **Triplex Wires:** Triplex wires are usually used in single-phase service drop conductors, between the power pole and weather heads. They are composed of two insulated aluminum wires wrapped with a third bare wire which is used as a common neutral. The neutral is usually of a smaller gauge and grounded at both the electric meter and the transformer.

❖ టరిపుల్చుని తీగలు: టరిపుల్చుని వైర్లు సాధారణంగా సింగిల్-దశ సర్పీన్ డీరాప్ కండక్టర్లు, పవర్ పోల్ మరియు వాతావరణ తలల మధ్య ఉపయోగిస్తారు. వారు ఒక సాధారణ తటపుంగా ఉపయోగించే మూడువ బేర్ వైర్లో చుట్టబడిన రెండు ఇన్సులేచెడ్ అల్యూమినియం తీగలతో కూడి ఉంటాయి. తటపుంగా ఒక చిన్న గేజ్ సాధారణంగా విద్యుత్ మీటర్ మరియు టీరాన్స్ఫర్రూర్ రెండింటిలో ఉంటుంది.

❖ **Main Feeder Wires** Main power feeder wires are the wires that connect the service weather head to the house. They're made with stranded or solid THHN wire and the cable installed is 25% more than the load required.

❖ ప్రధాన ఫీడర్ వైర్లు మొయిన్ పవర్ ఫీడర్ తీగలు వైర్లు, ఇవి వాతావరణ వాతావరణం తలని ఇంటికి కనెక్ట్ చేస్తాయి. వారు ప్రాండెట్ లేదా ఘన THHN వైర్లో తయారు చేయబడారు మరియు ఇన్సుల్ చేయబడిన కేబుల్ అవసరమైన లోడ్ కంటే 25% ఎక్కువ.

❖ **Panel Feed Wires:** Panel feed cables are generally black insulated THHN wire. These are used to power the main junction box and the circuit breaker panels. Just

like main power feeder wires, the cables should be rated for 25% more than the actual load.

❖ ప్యానెల్ ఫీడ్ తీగలు: ప్యానెల్ ఫీడ్ కేబుల్ని సాధారణంగా భ్లాక్ ఇన్సులేటెడ్ THHN వైర్. ఏటిని ప్రధాన జంక్సన్ బాక్స్ మరియు సర్క్యూట్ బోర్డులకు శక్తిగా ఉపయోగిస్తారు. ప్రధాన పవర్ ఫీడర్ తీగలు వంటి, కేబుల్ని అసలు లోడ్ కంచే 25% ఎక్కువ రేట్ చేయాలి.

❖ **Non-Metallic Sheathed Wires :** Non-metallic sheath wire, or Romex, is used in most homes and has 2-3 conductors, each with plastic insulation, and a bare ground wire. The individual wires are covered with another layer of non- metallic sheathing. Since it's relatively cheaper and available in ratings for 15, 20 and 20 amps, this type is preferred for in-house wiring.

❖ నాన్-మెటాలిక్ పీట్ట్ తీగలు: నాన్-మెటాలిక్ పీట్ వైర్ లేదా రోమ్మ్స్ చాలా గృహాలలో ఉపయోగించబడుతున్నాయి మరియు 2-3 కండక్టర్లను ప్లాష్టిక్ ఇన్సులేషన్లో, మరియు బేర్ గీర్సండ్ వైర్లో కలిగి ఉంది. వ్యక్తిగత వైర్లు కాని లోపాపు కత్తిరింపు మరికి పార తో కప్పబడి ఉంటాయి. ఇది 15, 20 మరియు 20 ఆంప్స్ కోసం రేటింగ్స్ చోకగా మరియు అందుబాటులో ఉన్నందున, ఈ రకం అంతర్ధాత వైరింగ్ కోసం ప్రాధాన్యతనిస్తుంది.

❖ **Single Strand Wires :** Single strand wire also uses THHN wire, though there are other variants. Each wire is separate and multiple wires can be drawn together through a pipe easily. Single strand wires are the most popular choice for layouts that use pipes to contain wires.

సింగిల్ ప్లోండ్ వైర్: సింగిల్ ప్లోండ్ వైర్ THHN వైర్ ను కూడా ఉపయోగిస్తుంది, అయితే ఇతర రకాలు ఉన్నాయి. ప్రతి వైరు వేరుగా ఉంటుంది మరియు బహుళ తీగలు తూగడు ద్వారా సులభంగా ఒక గొట్టు ద్వారా ఉండవచ్చు. వైర్లను కలిగి ఉన్న గొట్టులను ఉపయోగించే లేఅవుట్ సింగిల్ ప్లోండ్ వైర్ అత్యంత ప్రజాదరణ పొందినవి.

4. Color Codes: Different color wires serve different purposes, like:

- ❖ Single phase Line- Brown.
- ❖ Single phase Neutral- Blue.
- ❖ Single Phase Earth- Green.
- ❖ Three phase Line-L-1-Red
- ❖ three phase Line-L-2-Yellow
- ❖ Three phase Line-L-3-Blue
- ❖ Three phase Neutral-Black
- ❖ Three phase earth-Green/ Yellow strips on green

5. **Wire Gauge, Ampacity and Wattage Load:** To determine the correct wire, it is important to understand what ampacity and wattage a wire can carry per gauge. Wire gauge is the size of the wire, ampacity is how much electricity can flow through the wire and wattage

is the load a wire can take, which is always mentioned on the appliances..

వైర్ గేజ్, Ampacity మరియు వాటేజ్ లోడ్: సరైన వైర్ గుర్తించడానికి, అది ఒక ampacity మరియు వాటేజ్ ఒక తీగ గేజ్ తీసుకుని ఏమి వాటేజ్ అర్థం ముఖ్యం. వైర్ గేజ్ వైర్ యొక్క పరిమాణము, విద్యుత్తు వైర్ ద్వారా ప్రవహిస్తుంది ఎంత విద్యుత్తు, మరియు వాటేజ్ ఒక వైర్ తీసుకోగలడు, ఇది ఎల్లప్పుడూ ఉపకరణాలపై ప్రస్తావించబడింది.

UNDERSTANDING ELECTRICAL CABLE

ఎలక్ట్రానిక్ కేబులు అర్థం చేసుకోండి

An electrical cable also has different types, color and application as its determining factors. Here's a brief about cables that you need to understand to determine the correct cable for your home.

ఒక ఎలక్ట్రిక్ కేబుల్ కూడా వివిధ రకాలు, కలర్ మరియు అప్లికేషన్లను దాని నిర్ణయించే కారకాలుగా కలిగి ఉంది. ఇక్కడ మీరు మీ ఇంటికి సరైన కేబులు గుర్తించడానికి అర్థం కావలసి ఉండే కేబుల్ని గురించి క్లాష్ట్ కరించండి.

1. Types of Electrical Cables: There are more than 20 different types of cables available today, designed for applications ranging from transmission to heavy industrial use. Some of the most commonly-used ones include:.

ఎలక్ట్రికల్ కేబుల్ రకాలు: ప్రస్తుతం అందుబాటులో ఉన్న 20 రకాల కవర్లు ప్రస్తుతం అందుబాటులో ఉన్నాయి, వీటిని ఒక బదిలీకరణం నుంచి భారీ పారిశోధిక అవసరాల వరకు రూపొందించడానికి ఉపయోగపడతాయి. సాధారణంగా ఉపయోగించే వాటిలో కొన్ని:

- ❖ **Non-Metallic Sheathed Cable:** These cables are also known as non-metallic building wire or NM cables. They feature a flexible plastic jacket with two to four wires (TECK cables are covered with thermoplastic insulation) and a bare wire for grounding. Special varieties of this cable are used for underground or outdoor use, but NM-B and NM-C non-metallic sheathed cables are the most common form of indoor residential cabling.
- ❖ **నాన్-మెటలిక్ పీటర్ కేబుల్:** ఈ తంతులు అన్ని మెటలిక్ బిల్లింగ్ వైర్ లేదా ఎన్ఎం కేబుల్ని అని కూడా పిలువబడతాయి. వారు రెండు నుండి నాలుగు తీగలు (TECK తంతులు థర్మోప్లాషిక్ ఇన్సులేషన్లో కప్పబడి ఉంటాయి) మరియు ఒక బేర్ వైరింగ్ కోసం ఒక సొకర్యవంతమైన ప్లాషిక్ జాకెట్ ఉంటాయి. ఈ కేబుల్ యొక్క ప్రత్యేక రకాలు భూగర్భ లేదా బాహ్య ఉపయోగానికి ఉపయోగిస్తారు, కానీ NM-B మరియు NM-C కానీ లోప పీట కేబుల్ని అంతర్గత నివాస కేబులింగ్ యొక్క అత్యంత సాధారణ రూపం.

- ❖ **Underground Feeder Cable:** These cables are quite similar to NM cables, but instead of each wire being individually wrapped in thermoplastic, wires are grouped together and embedded in the flexible material. Available in a variety of gauge sizes, UF cables are often used for outdoor lighting and in-ground applications. Their high water-resistance makes them ideal for damp areas like gardens as well as open-to-air

lamps, pumps, etc.

❖ **అండ్రోండ్ ఫీడర్ కేబుల్:** ఈ తంతులు NM కేబులునుగా సమసంగా ఉంటాయి, కనీ ప్రతి తీగకు బదులుగా థర్మఫ్లాషిట్ చుట్టుబడి ఉంటుంది, వైర్లు ఆర్కు కలిసిపోయి, సొకర్యపంతమైన పదార్థంలో పొందుపరచబడి ఉంటాయి. వివిధ రకాల గేజ్ పరిమాణాలలో లభ్యమవుతుంది, UF కేబుల్ను తరచూ బహిరంగ లైటింగ్ మరియు ఇన్-గోండ్ అఫీకేషన్లకు ఉపయోగిస్తారు. వారి అధిక నీటి నిరోధకత తోటలు, అలాగే ఒపెన్ నుండి గాలి దీపాలు, పంపలు, తదితర తడిగా వీరాంతాల్లో వాటిని ఆదర్శ చేస్తుంది.

❖ **Metallic Sheathed Cable:** Also known as armored or BX cables, metal- sheathed cables are often used to supply mains electricity or for large appliances. They feature three plain stranded copper wires (one wire for the current, one grounding wire and one neutral wire) that are insulated with cross-linked polyethylene, PVC bedding and a black PVC sheathing. BX cables with steel wire sheathing are often used for outdoor applications and high-stress installations.

❖ **మెటలిక్ ఫీట్జ్ కేబుల్:** కూడా సాయిధ లేదా BX కేబుల్ను అని పిలుస్తారు, మెటల్- sheathed కేబుల్ను తరచుగా మెయిన్ విద్యుత్ సరఫరా లేదా పెథ ఉపకరణాలు కోసం ఉపయోగిస్తారు. అవి మూడు సాదా కాండం కాపర్ తీగలు (ప్రస్తుత కోసం ఒక వైర్, ఒక గోండ్ వైర్ మరియు ఒక తటపు వైర్), కీర్స్-లింక్ పాలిథిలిన్, PVC పరుపు మరియు ఒక నల్ల ఏచ్ పీటింగ్. ఫీల్ వైర్ పీటింగ్ తో BX కేబుల్ను తరచుగా బహిరంగ అనువర్తనాలు మరియు అధిక ఒత్తిడి సంపూపనలు కోసం ఉపయోగిస్తారు.

❖ **Multi-Conductor Cable:** This is a cable type that is commonly used in homes, since it is simple to use and well-insulated. Multi-conductor or multi-core (MC) cables feature more than one conductor, each of which is insulated individually. In addition, an outer insulation layer is added for extra security,

Different varieties are used in industries, like the audio multicore 'snake cable' used in the music industry.

❖ **మల్టీ-కండక్టర్ కేబుల్:** ఇది కేబుల్ రకంగా సాధారణంగా ఇళ్లలో ఉపయోగించబడుతుంది, ఎందుకంచే ఇది చాలా సులభం మరియు బాగా ఇన్నిలేట్ చేయబడుతుంది. బహుళ-కండక్టర్ లేదా బహుళ-కోర్ (MC) కేబుల్ను ఒకటి కన్నా ఎక్కువ కండక్టర్ను కలిగి ఉంటాయి, వీటిలో ప్రతి ఒక్కటి ఒక్కుక్కటిగా ఇన్నిలేట్ చేయబడి ఉంటుంది, అంతేకాకుండా బాహ్య ఇన్నిలేపన్ పొర అదనపు అదనపు భద్రతను జోడిస్తుంది, సంగీత పరిశ్రమలో ఉపయోగించే ఆడియో మల్టీకోర్ 'పాము కేబుల్' వంటి పరిశ్రమల్లో వివిధ రకాలు ఉపయోగించబడుతున్నాయి.

❖ **Coaxial Cable:** A coaxial (sometimes heliax) cable features a tubular insulating layer that protects an inner conductor which is further surrounded by a tubular conducting shield, and might also feature an outer sheath for extra insulation. Called coaxial' since the two inner shields share the same geometric axis, these cables are normally used for carrying television signals and connecting video equipment.

❖ **ఎకాక్ష కేబుల్:** ఒక ఎకాక్ష (కొన్నిసార్లు హెయాయాక్స్) కేబుల్ ఒక గొట్టపు ఇన్నిలేటింగ్ పొరను కలిగి ఉంటుంది, ఇది ఒక అంతర్భంత కండక్టర్ను కాపాడుతుంది, ఇది మరింత గొట్టపు కవచంతో కప్పబడి ఉంటుంది మరియు అదనపు ఇన్నిలేపన్ కోసం ఒక బాహ్య పొరను కలిగి ఉంటుంది. రెండు అంతర్భంత పీట్ట్స్ ఒక రేఖాగణిత అఙ్కున్ని

పంచుకున్నందున, ఈ తంతులు సామాన్యంగా చెలివిజన్ సంకేతాలను మరియు వీడియో పరికరాలు అనుసంధానించడానికి ఉపయోగిస్తారు.

❖ **Unshielded Twisted Pair Cable:** Like the name suggests, this type consists of two wires that are twisted together. The individual wires are not insulated, which makes this cable perfect for signal transmission and video applications. Since they are more affordable than coaxial or optical fiber cables, UTP cables are often used in telephones, security cameras and data networks. For indoor use, UTP cables with copper wires or solid copper cores are a popular choice, since they are flexible and can be easily bent for in-wall installation.

♦ అన్నిల్లో ట్యూప్లెడ్ పెయిర్ కేబుల్: పేరు సూచించినట్టుగా, ఈ రకంలో రెండు వైర్లు ఉంటాయి, అవి కలిసి వక్కిరీకరించి ఉంటాయి. వ్యక్తిగత తీగలు ఇన్నిలేదు చేయబడతాయి, ఈ కేబుల్ సిగ్నల్ ట్రాన్సైప్షన్ మరియు వీడియో అప్లికేషన్లకు ఖచ్చితమైనదిగా చేస్తుంది. ఎకాక్స్ లో ఆప్లిక్షన్ పైబర్ కేబుల్ కంచే ఇవి సరసమైనవి కాబట్టి, UTP కేబుల్ తరచుగా చెలిఫోన్లు, సెక్యూరిటీ కెమెరాలు మరియు డేటా నెట్వర్క్లో ఉపయోగిస్తారు. ఇంట్రో ఉపయోగం కోసం, రాగి వైర్లు లేదా ఘన రాగి కోర్డ్లతో UTP తంతులు ఒక ప్రముఖ ఎంపిక, ఎందుకంచే వారు సాకర్యవంతమైనవి మరియు సులభంగా గోడ గోడల సంపోషణకు బెంట్ అవుతాయి.

❖ **Ribbon Cable:** Ribbon cables are often used in computers and peripherals, with various conducting wires that run parallel to each other on a flat plane, leading to a visual resemblance to flat ribbons. These cables are quite flexible and can only handle low voltage applications.

❖ ఇ రిబ్బన్ కేబుల్: రిబ్బన్ కేబుల్ తరచుగా కంప్యూటర్ మరియు పెర్పోర్టర్ ఉపయోగించబడతాయి, ఒక ప్లాట్ విమానం మీద ఒకదానితో ఒకటి సమాంతరంగా పనిచేసే పలు వాహక తీగలు, ప్లాట్ రిబ్బన్లకు దృశ్య పోలికలకు దారితీస్తుంది. ఈ తంతులు చాలా సరళమైనవి మరియు తక్కువ వోల్టేజ్ అనువర్తనాలను మాత్రమే నిర్వహించగలవు.

❖ **Direct-Buried Cable:** Also known as DBCs, these cables are specially- designed coaxial or bundled fiber-optic cables, which do not require any added sheathing, insulation or piping before being buried underground. They feature a heavy metal core with many layers of banded metal sheathing, heavy rubber coverings, shock-absorbing gel and waterproof wrapped thread- fortified tape. High tolerance to temperature changes, moisture and other environmental factors makes them a popular choice for transmission or communication requirements.

❖ ఇ డైరెక్ట్-బర్డ్ కేబుల్: DBC లను కూడా పిలుస్తారు, ఈ తంతులు ప్రత్యేకంగా రూపొందించిన ఎకాక్స్ లో కొట్టబడిన పైబర్-అప్లిక్షన్ తంతులు, ఇవి భూగర్భంలో ఖననం చేయబడటానికి ముందు ఏవైనా అదనపు పీటింగ్, ఇన్నిలేషన్ లేదా పైపింగ్ అవసరం కావు. వారు భారీ లోపాపు కోర్ను కలిగి ఉంటాయి, పీటిలో కట్టింగ్ మెటల్ మెటల్ పీటింగ్, భారీ రబ్బరు కప్పులు, పాక్-శోషణ జెల్ మరియు జలనిరోధిత చుట్టిన ధరెడ్-ఫోర్మెడ్ చేపు. ఉప్పోగ్రథ మార్పులు, తేమ మరియు ఇతర పర్యావరణ కారకాలకు అధిక సహనం వాటిని ట్రాన్సైప్షన్ లేదా కమ్యూనికేషన్ అవసరాల కోసం ఒక ప్రముఖ ఎంపిక చేస్తుంది.

- ❖ **Twin-Lead Cable:** These are flat two-wire cables that are used for transmission between an antenna and receiver, like TV and radio.
- ❖ ఈ టైన్-లీడ్ కేబుల్: ఇవి యాంటెన్స్ మరియు రిస్వెంటర్ మధ్య TV మరియు రేడియో వంటి ప్రసారాలకు వాడే ఫ్లాట్ రెండు-వైర్ కేబుల్ని.
- ❖ **Twinaxial Cable:** This is a variant of coaxial cables, which features two inner conductors instead of one and is used for very-short-range high-speed signals.
- ❖ టైనాక్సిమాల్ కేబుల్: ఇది కోక్సియల్ కేబుల్ని యొక్క పైవిధ్యమైనది, ఇది రెండు అంతర్గత కండక్టర్ల బదులుగా ఒకదానిని కలిగి ఉంటుంది మరియు చాలా చిన్న-శేర్టి అధిక-వేగ సంకేతాలకు ఉపయోగిస్తారు.
- ❖ **Paired Cable:** With two individually insulated conductors, this cable is normally used in DC or low-frequency AC applications.
- ❖ జతచేయబడిన కేబుల్: రెండు వ్యక్తిగతంగా ఇన్సులేట్ కండక్టర్లతో, ఈ కేబుల్ సాధారణంగా DC లేదా తక్కువ-పొనుపున్య AC అనువర్తనాల్లో ఉపయోగించబడుతుంది.
- ❖ **Twisted Pair:** This cable is similar to paired cables, but the inner insulated wires are twisted or intertwined.
- ❖ టైప్లాస్టిడ్ పెయిర్: ఈ కేబుల్ జత కేబుల్ని మాదిరిగానే ఉంటుంది, కానీ లోపలి ఇన్సులేచెడ్ wires వక్రికృత లేదా అవిభక్త ఉంటాయి.

cable Color Code: Color coding of cable insulation is done to determine active, neutral and earth conductors. The NEC has not prescribed any color for phase/ active conductors, Different count ties/regions have different cable color coding, and It Is essential to know what is applicable in your region. However, active conductors cannot be green/yellow, green, yellow, light blue or black,»

కేబుల్ రంగు కోడ్: చురుకైన, తలష్ట మరియు భూమి కండక్టర్లను గుర్తించేందుకు కేబుల్ ఇన్సులేషన్ యొక్క రంగు కోడింగ్ చేయబడుతుంది. NEC ఏ ఫేజ్ / చురుకైన కండక్టర్లు, విభిన్న గణన సంబంధాలు / ప్రాంతాలు వేర్యేరు కేబుల్ రంగు కోడింగ్ కలిగివుంటాయి, మరియు మీ ప్రాంతంలో వర్తించేవి ఎమిట్ తెలుసుకోవడం చాలా అవసరం. అయితే, చురుకుగా కండక్టర్ ఆకుపచ్చ / పసుపు, ఆకుపచ్చ, పసుపు, లేత నీలం లేదా నలుపు ఉండకూడదు, »

❖ **Cable Size:** Cable size is the gauge of individual wires within the cable, such as 14, 12, 10 etc. — again, the bigger the number, the smaller the size. The number of wires follows the wire-gauge on a cable. So, 10/3 would indicate the presence of 3 wires of 10-gauge within the cable. Ground wire, if present, is not indicated by this number, and is represented by the letter 'G'.

Safety is very important, and if your installation of wires and cables is not proper, it could lead to accidents. Before you start any electrical project that includes wiring and cabling, you need to obtain permission from your local building inspector. Once the job is done, get the installation inspected for compliance with local codes and regulations.

కేబుల్ సైజు: కేబుల్ పరిమాణం కేబుల్ లోపల వ్యక్తిగత వైర్లు యొక్క గేజ్, 14, 12, 10 మొదలైనవి - మళ్ళీ, పెద్ద సంఖ్య, చిన్న పరిమాణం. తీగల సంఖ్య కేబుల్లో వైర్-గేజు అనుసరిస్తుంది. కాబట్టి, 10/3 కేబుల్ లోపల 10-గేజ్ యొక్క 3 తీగలు ఉనికిని సూచిస్తుంది. గీరోండ్ వైర్, ఉన్నట్టయితే, ఈ సంఖ్య సూచించబడు మరియు అష్టరం 'G' ద్వారా సూచించబడుతుంది.

భద్రత చాలా ముఖ్యం, మరియు తీగలు మరియు తంతులు మీ వ్యవస్థాపన సరైనది కాకపోతే, అది ప్రమాదాలకు దారి తీస్తుంది. మీరు వైరింగ్ మరియు కేబులింగు కలిగి ఉన్న ఏదైనా విద్యుత్ పొరాజెస్కును పొరాంభించడానికి ముందు, మీరు మీ ప్రానిక భవనం ఇన్నెవిషర్ నుండి అనుమతి పొందాలి. ఉద్యోగం పూర్తయిన తర్వాత, ప్రానిక సంకేతాలు మరియు నిబంధనలకు అనుగుణంగా తనిఖీ చెయ్యుండిన సంస్థాపనను పొందండి.

Colour Codes

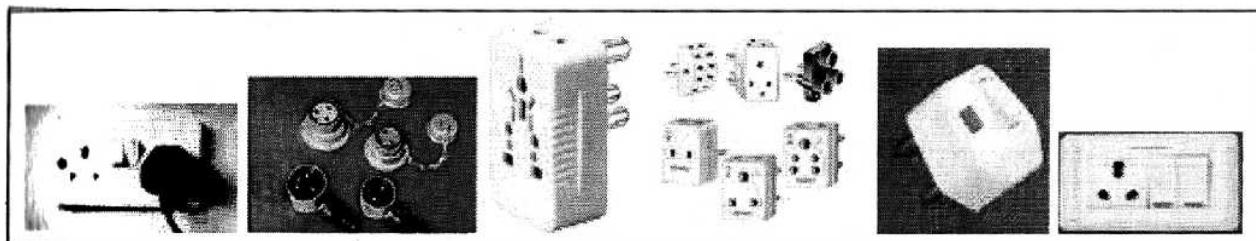
Function	India Color Code (Old)	India Color Code (New)
Single Phase Line		
Single Phase Neutral		
Single Phase Protective Ground or Earth		
Three Phase Line (L1)		
Three Phase Line (L2)		
Three Phase Line (L3)		
Three Phase Neutral (N)		
Three Phase Protective Earth or Ground (PE)		

If it is misused or poorly maintained, electrical equipment can be the cause of injury, death or fire. If it is well maintained, electrical equipment can save lives, improve the quality of lives and reduce capital expenditure. Electrical equipment and the electrical connections that supply power to it should always therefore be treated with respect and care.

Careful consideration should always be given to the placing of equipment. Damp conditions should be avoided and equipment should be positioned in a dry, clean, well ventilated area on a solid, level base. Equipment should be as near as possible to the electrical supply and extension leads should be discouraged.

Since most problems in this area occur with the plugs, sockets and cables supplying electrical power, the following measures would be important for electrical & personal safety:

ఇది దుర్వినియోగం లేదా పేలవంగా నిర్వహించబడితే, విద్యుత్ పరికరాలు గాయం, మరణం లేదా అగ్ని కారణం కావచ్చు. బాగా నిర్వహించబడి ఉంచే, ఎలక్ట్రికల్ సామగ్రి పోణాలను కాపాడుతుంది, నాణ్యమైన నాణ్యతను మెరుగుపరుస్తుంది, మూలధన వ్యయన్ని తగ్గిస్తుంది. నేను ' , ఇంద్రకర పరికరాలు మరియు విద్యుత్ దానికి అధికారం సరఫరా చేసే కనెక్టన్లు ఎల్లపుడూ గౌరవం మరియు సంరక్షణతో చికిత్స చేయబడాలి.


జాగ్రత్తగా ఉంచడం ఎల్లపుడూ పరికరాలు ఉంచడం ఇవ్వాలి. తడిగా ఉన్న పరిష్కితులు వాడకూడదు మరియు పరికరాలు ఘన, ప్రాయి పునాది మీద పొడి, శుభ్రమైన, బాగా వెంటిలేపన్ వీరాంతంలో ఉంచాలి. ఎలక్ట్రికల్ సరఫరా మరియు పొడిగింపు లీడ్స్ సాధ్యమైనంతవరకు సామగ్రిని నిరుత్సాహపరచాలి.

ఈ వీరాంతంలో చాలా సమస్యలు విద్యుత్ శక్తిని సరఫరా చేసే ఘగ్గు, సాకెట్లు మరియు తంతులుతో సంబంధిస్తాయి, ఈ కీరింది చర్యలు విద్యుత్ మరియు వ్యక్తిగత భద్రతకు ముఖ్యమైనవి:

1. Socket outlets and plugs

>

- ❖ A convenient and safe socket outlet should be available.
- ❖ Socket outlets should be at least 2 m from a sink or wash basin.
- ❖ The socket outlet should be adequate for the electrical capacity for the equipment.
- ❖ There should be proper grounding in the sockets.
- ❖ Plugs should match the socket outlets.
- ❖ సాకెట్ అవుట్టెల్లు మరియు ఘగ్గు
- ❖ సాకర్యవంతమైన మరియు సురక్షితమైన సాకెట్ అవుట్టెల్ అందుబాటులో ఉండాలి.
- ❖ సాకెట్ అవుట్టెన్ని ఒక కుండ లేదా వాష బేసిన్ నుండి కనీసం 2 మీటర్లు ఉండాలి.
- ❖ ఈ సాకెట్ కోసం ఎలక్ట్రికల్ సామర్థ్యం కోసం సాకెట్ అవుట్టెల్ తగినంతగా ఉండాలి.
- ❖ సాకెట్ సరైన ఆధారాలు ఉండాలి.
- ❖ ఘగ్గు సాకెట్ సముదాయానికి సరిపోలాలి.

2. Wiring of sockets and plugs: The wiring of a plug is colour coded to help guard against electrical accidents. The colour codes in India as per Indian Electricity Rules are as follows and will help in identifying the way to connect the Phase, Neutral and Earth

- ❖ **Phase (or Live) — Red, Blue or Yellow**
 - This carries the electrical drive current from the supplier to the equipment. It is the most dangerous line. Only qualified staff should work with this.
- ❖ **Neutral — Black**
 - This returns the current to the supplier. It should not be connected to Earth.
- ❖ **Earth (or Ground) — Green OR Green with Yellow lines**
 - This is used for safety and protection. If equipment is housed in a metal case, the

earth line will generally be connected to the case. The earth line in a socket is connected to a pipe or plate buried in the ground.

Notes on earthing

The earthing will depend upon the type of equipment being used:

- If there are only two wires in the power cable, no earth connection is required
- If the cable fitted has three conductors then equipment needs to be earthed properly

❖ Always make sure that the earth wire is longer than the other two so that if the cable is accidentally pulled out of the plug, the earth wire is the last wire to become disconnected

2. సాకెట్లు మరియు ఫ్స్ట్ యొక్క వైరింగ్: ఒక ఫ్స్ట్ యొక్క వైరింగ్ అనేది విద్యుత్ ప్రమాదానికి వ్యతిరేకంగా రక్షించడానికి సహాయంగా కోడెడ్ రంగు. ఇండియన్ ఎలెక్ట్రిసిటీ రూల్స్ ప్రకారం భారతదేశంలో రంగు సంకేతాలు క్రింది విధంగా ఉంటాయి మరియు దశ, తటష్ మరియు భూమిని అనుసంధానించటానికి మార్గం గుర్తించడంలో సహాయపడుతుంది

❖ దశ (లేదా లైవ్) - ఎరువు, నీలం లేదా పసుపు

❖ ఇది సరఫరాదారు నుండి పరికరాలకు ప్రస్తుత విద్యుత్ ద్వారా కలిగి ఉంటుంది. ఇది అత్యంత ప్రమాదకరమైన మార్గం. అద్దతు కలిగిన సిబ్బంది మాత్రమే ఈ పని చేయాలి.

❖ తటష్ - నలుపు

ఇది ప్రస్తుతము సరఫరాదారునికి తిరిగి పంపుతుంది. ఇది భూమికి కనెక్ట్ కాస్టడ్ దు.

❖ ఎర్ర (లేదా గీరోండ్) - పసుపు రంగు రేఖలతో ఆకుపచ్చ OR గీరీన్

ఇది భద్రత మరియు భద్రతకు ఉపయోగిస్తారు. ఒక మెటల్ కేసులో పరికరాలు ఉంచినట్లయితే, భూమి లైన్ సాధారణంగా కేసుకు అనుసంధానించబడుతుంది. ఒక సాకెట్ లో భూమి లైన్ భూమి పై ఖననం పైపు లేదా ఫ్లైట్ అనుసంధానించబడి ఉంది.

❖ భూమిపై గమనికలు

భూమిని వాడుతున్న రకం పరికరాలు మీద ఆధారపడి ఉంటుంది:

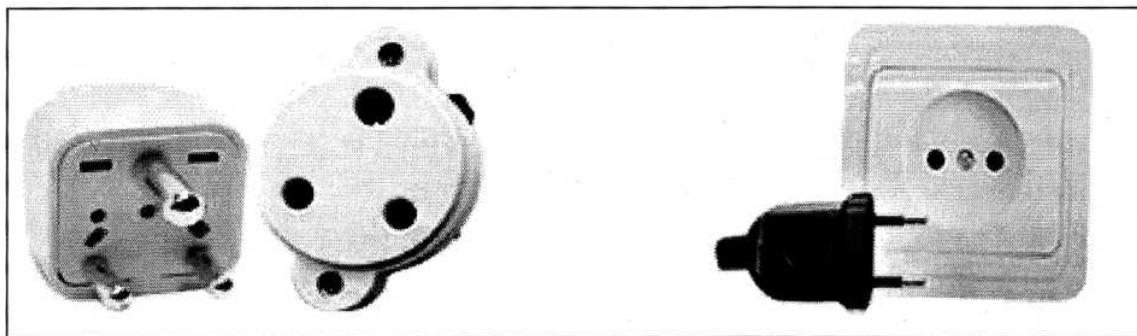
❖ పవర్ కేబుల్లో రెండు తీగలు మాత్రమే ఉంచే, భూమి సంబంధం అవసరం లేదు

❖ కేబుల్ అమరిపునట్లయితే మూడు కండక్టర్లను కలిగి ఉంచే అప్పుడు పరికరాలు సరిగ్గా కరిగించాలి

❖ భూమి యొక్క వైరు ఇతర రెండు కన్స్ ఎక్కువ అని నిర్దారించుకోండి, తద్వారా ఆ కేబుల్ అనుకోకుండా ఫ్లగ్ తీసివేసినట్లయితే భూమి వైర్ అనేది డిస్కునెక్ట్ అయిన చివరి వైర్

2. **Sizes and types of sockets and plugs:** The current rating (i.e. the amount and size of equipment they can supply) is measured in Amperes, written A'. The rating and size of normally found plugs and sockets are:

3. సాకెట్లు మరియు ఫ్ల్గ్స్ యొక్క పరిమాణాలు మరియు రకాలు: ప్రస్తుత రేటింగ్ (అంచే వారు సరఫరా చేయగల మొత్తం పరిమాణం మరియు పరిమాణము) అమర్పర్స్ లో వేరాయబడింది, A'. సాధారణంగా కనిపించే ఫ్ల్గ్స్ మరియు సాకెట్స్ యొక్క రేటింగ్ మరియు పరిమాణం:


- ❖ For low power operations 5 Amperes — small size
- ❖ For large power applications 15 Amperes — large size

Mains electricity comes at a specified voltage and is measured in Volts, written 'V'. The voltage in India is 220-240 V for single phase and 440 V for three phase operations. It also is delivered at a specific frequency, measured in Hertz, written 'Hz'. Mains electricity in India is at 50 Hz.

A variety of electrical plugs are found throughout India, so an adaptor plug set is recommended. Type D is most common, which is also known as the Old British Plug. It has three large round pins in a triangular configuration.

మొయన్న విద్యుత్ ఒక నిర్దిష్ట వోల్టేజ్ వద్ద వస్తుంది మరియు వోల్టేజ్ వరాయబడుతుంది, ఇది 'V' అని వరాయబడింది. భారతదేశంలో వోల్టేజ్ ఒక్క దశకు 220-240 V మరియు మాడు దశల కోసం 440 V. ఇది పోల్టేజ్ వరాయబడిన నిర్దిష్ట శాంతిపున్యం వద్ద ఇవ్వబడుతుంది, ఇది 'Hz' అని వరాయబడింది. భారతదేశంలో మొయన్న విద్యుత్ 50 హెచ్టి వద్ద ఉంది.

భారతదేశం అంతటా వివిధ రకాలైన విద్యుత్ ఘ్నంగ్ కనిపిస్తాయి, కాబట్టి ఒక అడవ్పుర్ ఘ్నం సెట్ సిఫారసు చేయబడింది. తైప్ డి ఆనేది సర్వసాధారణమైనది, ఇది ఒక్క బెరిటిమ్ ఘ్నం అని కూడా పిలుస్తారు. ఇది తీరిఖుజాకార ఆకృతిలో మూడు పెద్ద రొండ్ పిన్స్ కలిగి ఉంది.

Type D Plug and Socket

Type C Plug and Socket

The type C European 2-pin plug and electrical outlet is also very popular connector for common medical equipment which does not require earthing. Popularly known as the Europlug, it is used throughout continental Europe, parts of the Middle East, much of Africa, South America, central Asia, and the former Soviet republics.

రకం C యూరోపియన్ 2-పిన్ ఫ్లగ్ మరియు ఎలఫ్ట్రిక్ అవస్థల్ అనేది సామాన్య వైద్య పరికరాలకు కూడా చాలా వ్యాచుర్యం కనెక్షన్ల్ ఉంది, ఇది భూమిని అవసరం లేదు. యూరోఫ్లగ్ పిలువబడేది, ఇది ఖండాంతర పరోపా, మధ్యవ్యాచ్యంలోని కొన్ని భాగాల్లో, ఆఫరికా, దక్షిణ అమెరికా, మధ్య ఆసియా మరియు మాజీ సోవియట్ రిపబ్లిక్ లలో ఉపయోగించబడింది.

3. Mains cables: Electricity is carried to the equipment through the mains cable. Points to

be aware of are:

4. మెయిన్ తంతులు: మెయిన్ కేబుల్ ద్వారా ఎలక్ట్రిసిటీ పరికరాలు తీసుకెళతారు. తెలుసుకోవలసిన పాయింట్లు:

- ❖ No bare metal or internal coloured wire should be visible — the plastic insulation is there for safety
- ❖ Cable should not be repaired with insulating tape - water can still get inside
- ❖ Long flexible leads are dangerous - leads should be as short as possible
- ❖ The cable, plug and socket should never be allowed to get wet — water can conduct electricity
- ❖ బేర్ మెటల్ లేదా అంతర్గత రంగు వైరు కనిపించకూడదు - భద్రత కోసం ప్లాషిక్ ఇన్సులేషన్ ఉంది
- ❖ కేబులు చేప ఇన్సులేటింగ్ మరమ్మతు చేయాడు - నీరు ఇప్పటికీ లోపలకి వస్తుంది
- ❖ లాంగ్ ప్లాసిబుల్ లీడ్స్ ప్రమాదకరమైనవి - లీడ్స్ సాధ్యమైనంత తక్కువగా ఉండాలి
- ❖ కేబుల్, ఫ్ల్గ్ మరియు సాకెట్ ఎన్నటికీ తడి - జలాన్ని పొందడం అనుమతించబడదు

4. **Fuses:** Fuses are used as protection. If the current through them is greater than their specified rating, they blow. This breaks the circuit and stops the current, making the equipment safe. Points of safety regarding fuses are:

5. ప్ర్యాజలు: ప్ర్యాజను భద్రంగా ఉపయోగిస్తారు. వాటి ద్వారా ప్రస్తుతము వారి పేర్లొన్న రేటింగ్ కన్నా ఎక్కువగా ఉంటే, అవి చెదరగొట్టాయి. ఇది సర్వాంగించు విచ్చిన్నం చేస్తుంది మరియు పరికరాలను సురక్షితంగా ఉంచడం ద్వారా ప్రస్తుతాన్ని నిలిపివేస్తుంది. ప్ర్యాజల గురించి భద్రత యొక్క పాయింట్లు:

- ❖ Always use the correct rating of fuse — voltage V (volts) and current A (amperes)
- ❖ Always use the correct size of fuse — keep the old one to check against
- ❖ NEVER replace the fuse with bare wire — it will not be safe
- ❖ Circuit breakers are fuses that have buttons or switches for reset — they do not normally need replacing
- ❖ ఎంట్రెజ్ వ్ (ఎంట్ర్స్) మరియు ప్రస్తుత ఎ (ఆంపియర్)
- ❖ ఎల్లాఫేళలా ప్ర్యాజ్ యొక్క సరైన పరిమాణాన్ని వాడండి - పాతదాన్ని ఒకదానికి వ్యతిరేకంగా తనిఖీ చెయ్యండి
- ❖ బేర్ వైర్ ప్ర్యాజ్ ఎక్కించకూడదు - అది సురక్షితంగా ఉండదు
- ❖ సర్వాంగ్ బోర్డ్ బటన్లు బటన్లు లేదా రీసెట్లకు స్వీచ్చు కలిగివున్న ప్ర్యాజ్ - అవి సాధారణంగా ప్లానంలో ఉండవ

Practical Exercise: Measuring wire sizes with wire guaze

STANDARD WIRE GAUGE

A standard wire gauge

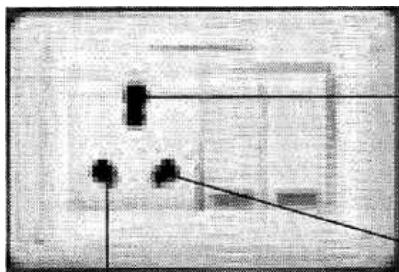
British Standard Wire Gauge is a set of wire sizes given by BS 3737:1964 (now withdrawn), and is generally abbreviated to SWG. It is also known as: **Imperial Wire Gauge** or **British Standard Gauge**. Use of SWG sizes has fallen greatly in popularity; it is still used as a measure of thickness in guitar strings and some electrical wire, (though the sectional area in square millimetres is now a more popular size measurement. The current British Standard for metallic materials such as wire and sheet is BS 6722:1986, which is a solely metric standard.

The basis of the system is the mil, or 0.001 in. No. 7/0, the largest size, is 0.50 III (500 mils or 12.7 mm) in diameter, and the smallest, No. 50, is 0.001 in. (1 mil or about 25 pm) in diameter. Between each gauge, the weight diminishes by approximately 20%. Because the weight per unit length is related to the area, and therefore (the square of the diameter, the diameter diminishes by approximately 10.6%:

బరిటీష్ ప్రాండర్ వైర్ గేజ్ BS 3737: 1964 (ఇప్పుడు ఉపసంహరించుకుంది) ఇచ్చిన వైర్ పరిమాణాల సమితి, మరియు సాధారణంగా SWG కు సంక్లిష్టికరించబడింది. ఇది ఇంపీరియల్ వైర్ గేజ్ లేదా బరిటీష్ ప్రాండర్ గేజ్ అని కూడా పిలుస్తారు. SWG పరిమాణాల ఉపయోగం ప్రమాణైనదిగా ఉంది; కొండను ఇప్పటికీ గిటార్ తీగలను మరియు కొన్ని విద్యుత్ వైర్ ("చతుర్స్మారక మిల్లిమీటర్లో విభాగాల వేరాంతం ఇప్పుడు మరింత జనాదరణ పొందిన పరిమాణ కొలమానంగా ఉంది) యొక్క కొలతగా ఉపయోగించబడుతుంది." అతను వైర్ మరియు మీటర్ వంటి లోపా పదార్థాల కోసం ప్రస్తుత బరిటీష్ ప్రాండర్ BS 6722 : 1986, ఇది కేవలం మెట్రిక్ ప్రమాణం.

వ్యవస్థ యొక్క IEC ఆధారంగా మీల్సు లేదా 0.001 లో No. 7/0, అతిపెద్ద పరిమాణం, వ్యాసంలో 0.50 III (500 మిల్సు లేదా 12.7 మిమీ), మరియు చిన్నది, నం. 50, 0.001 in (1 కొండ లేదా సుమారు 25 గంటలు) వ్యాసంలో. ప్రతి గేజ్ మర్యాద, బరువు 20% అనారోగ్యాత్మకంగా తగ్గిపోతుంది. ఎందుకంటే యూనిట్ పొడవుకు ఉన్న బరువు వేరాంతానికి సంబంధించినది మరియు ihnelore (అతను చదరపు వ్యాసం, (అతను వ్యాసం సుమారు 10.6% తగ్గిపోతుంది:

A table of wire gauges and diameters is shown below. The relationship of diameter to gauge is piecewise linear, only approximating a (constant-ratio) exponential curve.


వైర్ గేజ్లు మరియు వ్యాసాల పట్టిక కీరింద చూపించబడింది. కొలవటానికి వ్యాసం యొక్క సంబంధం ముక్కలు సరళంగా ఉంటుంది, ఇది కేవలం ఒక (స్థిర-నిష్పత్తి) ఎకోన్సియల్ పక్రమమును మాత్రమే కలిగి ఉంటుంది.

British SWG (Standard Wire Gauge) diameters

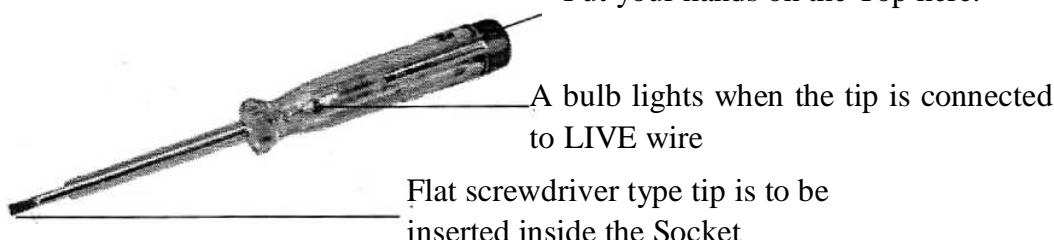
SWG	in	Mm	Step
7/0	0.500	12.700	0.036"/gauge
6/0	0.464	11.786	0.032"/gauge
5/0	0.432	10.973	
4/0	0.400	10.160	0.028"/gauge
3/0	0.372	9.449	0.024"/gauge
2/0	0.348	8.839	
0	0.324	8.230	
1	0.300	7.620	
2	0.276	7.010	
3	0.252	6.401	0.020"/gauge
4	0.232	5.893	
5	0.212	5.385	
6	0.192	4.877	0.016"/gauge
7	0.176	4.470	
8	0.160	4.064	
9	0.144	3.658	
10	0.128	3.251	0.012"/gauge
11	0.116	2.946	
12	0.104	2.642	
13	0.092	2.337	
14	0.080	2.032	0.008"/gauge
15	0.072	1.829	
16	0.064	1.626	
17	0.056	1.422	
18	0.048	1.219	
19	0.040	1.016	0.004"/gauge
20	0.036	0.914	
21	0.032	0.813	
22	0.028	0.711	

23	0.024	0.610	0.002"/gauge
24	0.022	0.559	
25	0.020	0.5080	
26	0.018	0.4572	0.0016"/gauge
27	0.0164	0.4166	
28	0.0148	0.3759	0.0012"/gauge
29	0.0136	0.3454	
30	0.0124	0.3150	0.0008"/gauge
31	0.0116	0.2946	
32	0.0108	0.2743	
33	0.0100	0.2540	
34	0.0092	0.2337	
35	0.0084	0.2134	
36	0.0076	0.1930	
37	0.0068	0.1727	
38	0.0060	0.1524	
39	0.0052	0.1321	0.0004"/gauge
40	0.0048	0.1219	
41	0.0044	0.1118	
42	0.004	0.1016	
43	0.0036	0.0914	
44	0.0032	0.0813	
45	0.0028	0.0711	
46	0.0024	0.0610	
47	0.0020	0.0508	
48	0.0016	0.0406	
49	0.0012	0.0305	0.0002"/gauge
50	0.0010	0.0254	

Practical Exercise: How to Identify the Live, Neutral and Earth on Power Socket

Earth Point is at the Top of the socket

Neutral wire is connected on the Right Side


Live wire is connected on the Left Side

If the wires are not connected as above you need to open the Power Socket and connect the wires as indicated.

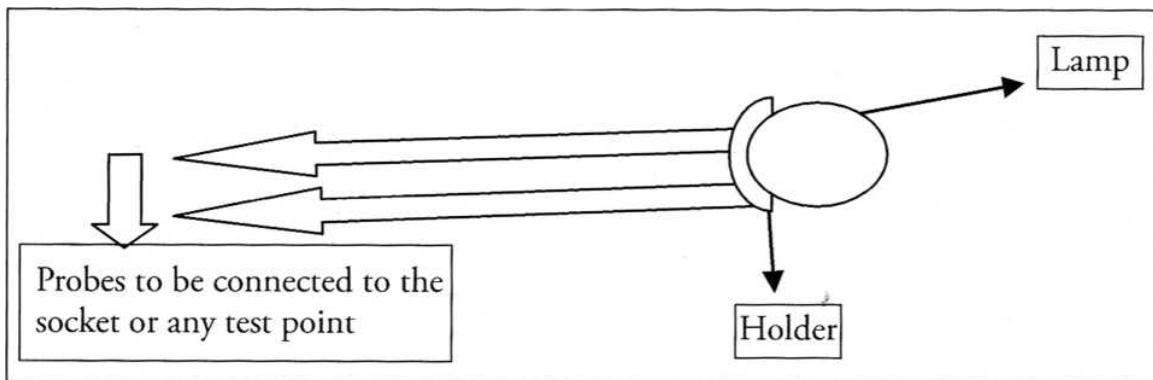
Practical Exercise: How to use a Tester to Monitor AC Power

Monitoring AC Power is simple with the Testers. The popular tester looks as below. Insert the tip insi

Practical Exercise: Construct a Test Lamp and use it to check the Mains healthiness. Put your hands on the Top here.

Insert the Flat tip in the Socket and put the finger on the top of the tester. The Lamp will light if the Power is there when it touches the LIVE wire. If the LIVE wire is not in the LEFT side open the socket and connect the LIVE to the left and Neutral to the RIGHT. The Lamp will not glow in the Neutral or the Earth.

సాకెట్ ఫ్లాట్ చిట్కాని చోప్పించండి మరియు చెప్పర్ పైబాగంలో వేలు ఉంచండి. లైవ్ వైర్ తాకినప్పుడు పవర్ ఉంటే అక్కడ దీపం వెలుగుతుంది. LEFT వైర్ లైవ్ వైర్ లేకపోతే సాకెట్ తెరిచి కుడికి ఎదుమ మరియు తటప్పంగా LIVE ను కనెక్ట్ చేయండి. దీపం తటప్ప లేదా భూమిలో మెరుస్తూ ఉందదు.


A simple Test Lamp is constructed as below:

1. Take a holder and connect a two wires to the holder. Make sure the wires are well insulated.
2. Connect the other end to two probes and make sure that the point where connection is being done is well insulated.
3. Connect a Lamp say 30 W bulb.
4. Insert the probe between LIVE and NEUTRAL Socket . The Lamp should light if the POWER is there.

Insert the Flat tip in the Socket and put the finger on the top of the tester. The Lamp will light if the Power is there when it touches the LIVE wire. If the LIVE wire is not in the LEFT side open the socket and connect the LIVE to the left and Neutral to the RIGHT. The Lamp will not glow in the Neutral or the Earth.

సాకెట్ ఫ్లాట్ చిట్టుని చొప్పించండి మరియు చెప్పర్ పైబాగంలో వెలు ఉంచండి. లైవ్ వైర్ తాకినప్పుడు పవర్ ఉంచే అక్కడ దీపం వెలుగుతుంది. LEFT వైపు లైవ్ వైర్ లేకపోతే సాకెట్ తెరిచి కుడికి ఎడమ మరియు తలప్పంగా LIVE ను కనెక్ట్ చేయండి. దీపం తటపు లేదా భూమిలో మెరుస్తూ ఉండదు.

5. Insert the probe between EARTH and NEUTRAL. The Lamp should not light if the NEUTRAL AND GROUND are OK.
6. Insert the probe between the EARTH and LIVE points. The Lamp should light if the EARTH and LIVE is ok and if POWER is there.

If on testing a socket the Neutral is found on the LEFT open the socket and connect the LIVE to the LEFT and NEUTRAL to the RIGHT hand side in the socket.

Practical Exercise: Measure the Voltage between Neutral and Ground and rectify the Earthing

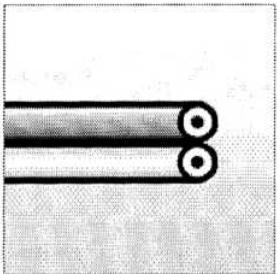
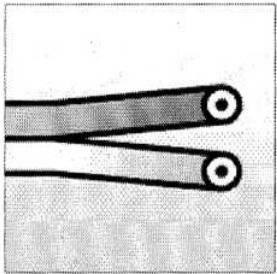
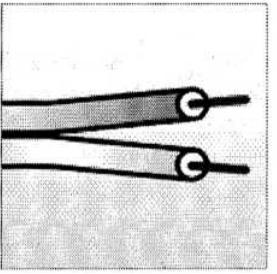
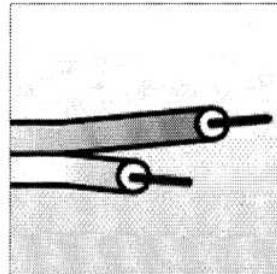
Ground Or Earthing protects us from the fatal effect in case a device gets short * In uited. The Live current will be carried to the Earth and will not give us hazardous shocks in case the body touches the LIVE. Neutral is meant to complete the CIRCUIT With I Jve wire.

Measure the Voltage between Ground and Neutral and make sure it is LOW say than 5 V. If it is more than that we have to make a proper ground.

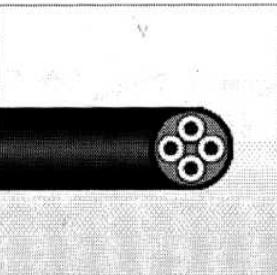
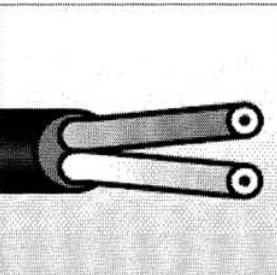
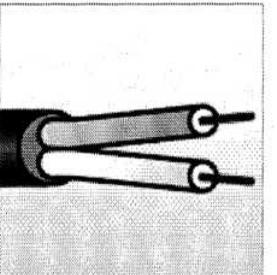
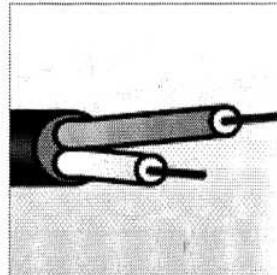
lb make a proper ground dig up the earth around two feet and put some charcoal, tfdt and water into it. Then put a Copper rod inside it and fill up the earth. Attach an I uih wire to the rod and attach the other end of the wire to the Ground connection UH die socket or to the Mains earth connection.

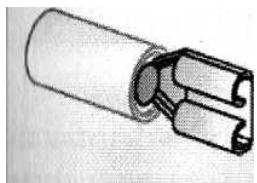
Occasionally keep watering it for good Earthing.

గీరొండ్ ఆర్ ఎర్చుంగ్ అనేది ఒక పరికరాన్ని చిన్నదిగా తీసుకును సందర్శించో ఏరాణాంతకమైన ప్రభావం నుండి మాకు రక్కిస్తుంది. లైవ్ ప్రవాహం భూమికి తీసుకెళ్ళబడుతుంది మరియు శరీరాన్ని లైవ్ తాకినప్పుడు





మాకు ప్రమాదకర అవరోదాలు ఇవ్వపు. నేను JVE వైర్ లో సర్క్యూట్ పూర్తి తటపు ఉండేశించబడింది. మైదానం మరియు తటపు మధ్య వోల్టేజ్‌జ్యూ కోలిచండి మరియు ఇది 5V కంచే తక్కువగా ఉంటుంది అని నిర్ధారించుకోండి. Ib సరైన మైదానం రెండు ఆడుగుల చుట్టూ భూమిని తీయాలి మరియు దానిలో కొన్ని బొగ్గు, TFDT మరియు నీరు ఉంచండి. అప్పుడు లోపల ఒక రాగి రాడ్ ఉంచండి మరియు భూమి నింపండి. కథ్టికి ఒక ఐహిక వైర్ లో అటూచ్ చేసి, వైద్ యొక్క ఇతర ముగింపును గోండ కనెక్టన్ పిఎచ్ డ్రై సాకెట్ లేదా మెయిన్స్ భూమి కనెక్టన్కు అటూచ్ చేయండి. అప్పుడప్పుడు మంచి భూమికి నీరు తీరాగుతూ ఉండండి.

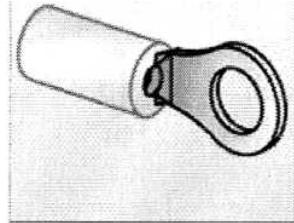
Practical Exercise: Making the mains cable termination





We Need to find the best way to terminate the ends of a cable or wire. The important HHiuion termination options are provided below:

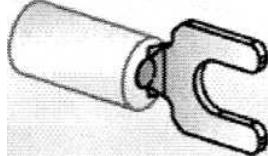

మేము ఒక కేబుల్ లేదా వైర్ చివరలను రద్దు ఉత్తమ మార్ధం కనుగొనేందుకు అవసరం. ముఖ్యమైన HHiuion రద్దు ఎంపికలు కీరింద ఇవ్వబడ్డాయి:

WIRE TERMINATION OPTIONS

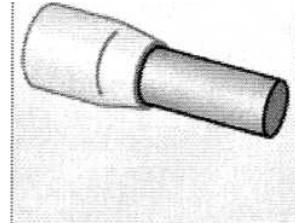
End Cut Wire is cut even at customer specified length.	Wire Slit Where parallel wire is used, ends can be separated from each other to customer specifications.	Wire Strip Wire ends are "stripped" of their insulation material to expose the inner copper strands.	Cut Back Wires are cut and terminated at different lengths according to customer specifications


CABLE TERMINATION OPTIONS

Blunt Cut Cable is cut even at customer specified length.	Remove outer-Jacket Also known as R.O.J., the outer insulating cable jacket is removed to expose the inner wires. Length is determined by customer.	ROJ & Stripped Wires Outer cable jacket is removed and wire ends are stripped of insulating material.	Cutback Wires Outer cable jacket is removed and wires are cut and terminated at different lengths.



Quick connect


Available In:
Un-Insulated, Pre
Insulated, Fully In-
sulated, Right-An-
gle (Flag)
Ring Terminal
Spade or Fork

Used to attach
product with screw or
bolt. Perfect for a
ground connection.
Also available in
locking.

Terminal /
Similar to a Ring Ter-
minal, but removable
without completely
unscrewing bolt or
screw
Ferrule Termina

For use with Terminal
Blocks. Used to crimp
and secure bare
copper strands. Also
available in a double
for crimping 2
separate wire

TERMINATION TYPES

I Solder Type A solder type connection allows for a strong, solid mechanical and electrical connection. Clean the connection well. For electrical circuits you must use a rosin type flux to clean all connections. Do not use acid flux that is commonly used for plumbing installation. The acid based flux will cause corrosion and inherently cause intermittent problems with the electrical signal. The choice of solder is also important. Using a solder standard 60/40 formula will meet the majority of your soldering needs. However, lead-free and high-grade silver solder is available for special applications. Also, use a soldering iron of the proper wattage. If the soldering iron is not hot enough, you may not be able to heat the connection enough to get a good solder joint. This may cause what is known as a "cold" solder joint and can cause intermittent problems like opens to occur. However, if the soldering iron is too hot, you can cause damage to the components of the system near the connection. This can also cause the Insulation to possibly melt causing the bare primaries to make contact with each other resulting in a short.

టంకము రకం ఒక టంకము రకం కనెక్టన్ ఒక బలమైన, ఘన యాంతీరిక మరియు విద్యుత్ కనెక్టన్ కోసం అనుమతిస్తుంది. బాగా కనెక్టన్ శుభం. విద్యుత్ వలయాలకు అన్ని కనెక్టన్లను శుభం చేయడానికి మీరు ఒక రోసిన్ రకం ఘనిన్ ఉపయోగించాలి. ఘనబింగ్ సంప్రాపనకు సాధారణంగా ఉపయోగించే యాసిడ్ ఘనిన్ ఉపయోగించవద్దు. యాసిడ్ ఆధారిత ఘన్ తుప్పు పట్టించి, అంతర్భతంగా విద్యుత్ సిగ్నల్లో అంతరాయ సమస్యలకు కారణమవుతుంది. సిల్ఫ్రో యొక్క THC ఎంపిక కూడా ముఖ్యమైనది. ఒక టంకము పీరామాణిక 60/40 ఫార్యూలా ఉపయోగించి మీ soldering అవసరాలను మెజారిటీ చేరుకోవాలి. అయితే, ప్రధాన-ఉచిత మరియు అధిక-నాణ్యత వెండి టంకము ప్రత్యేక అనువర్తనాలకు అందుబాటులో ఉంది. కూడా, ఒక soldering ఇనుము 01 సరైన వాచేబ్ ఉపయోగించండి. టంకము ఇనుము తగినంతగా వేడి చేయకపోతే, మీకు మంచి టంకము ఉమ్మడిని పొందటానికి తగినంత కనెక్టన్ చేయలేదు. ఇది "చల్లని" టంకము ఉమ్మడిగా పిలవబడటానికి కారణమవుతుంది మరియు సంభవించేలా వంటి అడపాదడపా సమస్యలను కలిగిస్తుంది. అయితే,

soldering ఇనుము చాలా వేడి ఉంచే, మీరు కనెక్టన్ సమీపంలో వ్యవస్థ యొక్క భాగాలు నష్టం కలిగిస్తుంది. అంతేకానుండా, బేరి పేరాధమికాలను ఒకదానితో ఒకటి కలిపేందుకు, చిన్న ఫలితంగా దీనివల్ల ఇనుటేషన్ కరుగుతుంది.

Crimp Type: A crimp type connection allows for quick and simple installation while still maintaining a mechanical and electrical connection fairly close to a solder type termination. Solid or stranded wire can be used in this type of teimlnation. Some of the key points to remember for a good clean connection ate as follows: 1. Make sure you use the proper size connector for the type of i able you are using. 2. Make sure all ol your cuts and stripping are clean. 3. Avoid nicks as much as possible. 4. Use the proper crimp tool, don't try to improvise with pliers, etc. The most common crimp method involves two crimps, one on the insulation for a stronger mechanical connection and one on the conductor or shield for a good electrical connection. A crimp tool is designed specifically for this type of termination for the type of connector you are using. This allows for good connections both mechanical and electrical. Using pliers will allow connection. However, it may not be a solid mechanical or electrical connection and can cause the connector to eventually come loose and intermittent problems with the electrical signal can occur.

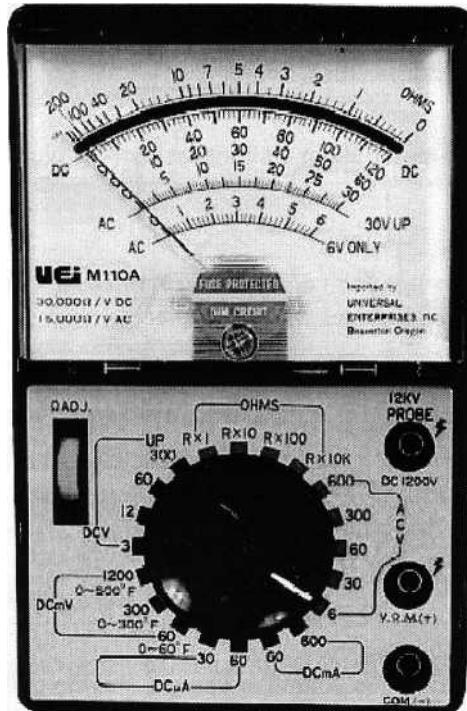
క్రిమ్ టైప్: ఒక క్రిమ్ టైప్ కనెక్టన్ త్వరిత మరియు సరళమైన సంపోపనకు అనుమతిస్తుంది, అయితే మెకానికల్ మరియు విద్యుత్ కనెక్టన్ ఒక టంకరు రకం మరిగింపుకు దధరగా ఉంటుంది. ఘనమైన లేదా ఒంటరిగా ఉండే తీగను ఈ రకమైన టీమినేషన్లో ఉపయోగించవచ్చు. ఒక మంచి శుభ్రంగా కనెక్టన్ కోసం గుర్తుంచుకోవలసిన కొన్ని కీలకమైన అంశాలు క్రింది విధంగా ఉన్నాయి: 1. నేను మీరు ఉపయోగించగల సామర్థ్యానికి సరైన పరిమాణం కనెక్టర్ను ఉపయోగించాలి చూసుకోండి. 2. మీ కట్టు మరియు ఫ్లిప్పింగ్ అన్ని పశ్చాత్ క్లిప్ అని నిర్మారించుకోండి. 3. సాధ్యమైనంత నిక్లను మానుకోండి. సాధారణ క్రింప్ సాధనాన్ని వాడండి, శీరావణంతో మెరుగుపర్చడానికి ప్రయత్నించకండి. అత్యంత సాధారణ క్రిమ్ పద్ధతి రెండు క్రిమ్మను కలిగి ఉంటుంది, ఒక బలమైన యాంత్రిక కనెక్టన్ కోసం ఇనుటేషన్లో ఒకటి మరియు ఒక మంచి విద్యుత్ కనెక్టన్ కోసం కండక్టర్ లేదా పీల్ట్ ఒకటి. మీరు ఉపయోగిస్తున్న కనెక్టర్ యొక్క రకాన్ని ఈ రకమైన రద్దు కోసం ప్రత్యేకంగా ఒక క్రిమ్ సాధనం రూపొందించబడింది. యాంత్రిక మరియు విద్యుత్ రెండింటికి మంచి అనుసంధానాలకు ఇది ఏలు కల్పిస్తుంది. శీరావణం ఉపయోగించి కనెక్టన్ అనుమతిస్తుంది. అయితే, ఇది ఒక ఘన యాంత్రిక లేదా విద్యుత్ కనెక్టన్ కాకపోవచ్చు మరియు కనెక్టన్ చివరికి విద్యుత్ సంకేతంతో వదులుగా మరియు అంతరాయ సమస్యలకు దారి తీస్తుంది.

3. **Insulation Displacement:** This type of termination is usually used in punch down blocks, wall connectors, and in the back of patch panels. This type of termination eliminates the need for stripping the conductor insulation. As the conductor is pushed through the clip, the insulation is cut into and the metal clip contact makes contact with the wire. The best type of wire to use is a solid conductor. If you use a stranded conductor the force of the termination may allow the clip to cut some of the strands. Also, stranded wire will “crush” somewhat which will not allow for a solid connection.

However, both types of conductors are used in various systems. The connection is made by using a punch down tool. Some patch panel manufacturers supply a termination cap that terminates several wires at once without the use of a tool. Some tools will allow use of different bits for use with various terminations, (i.e. 66 block, 110 block, etc.). Just like the crimping type termination, it is important to use the correct bit for the type of termination you are doing.

3. ఇన్సులేషన్ డిస్ట్రిబ్యూషన్: ఈ రకమైన రద్దు సాధారణంగా భాకులను, గోడ కనెక్టర్లను, మరియు ప్యాచ్ ప్యానెళ్ల వెనుక భాగంలో ఉపయోగిస్తారు. ఈ రకమైన రద్దు కండక్టర్ ఇన్సులేషన్ తోలగించాల్సిన అవసరాన్ని తోలగిస్తుంది. కండక్టర్ క్లిప్ అయినప్పటికీ ఒత్తుటిని తగ్గించడంతో, ఇన్సులేషన్ కత్తిరించబడింది మరియు మెటల్ క్లిప్ పరిచయం వైర్ సంబంధం కలిగి ఉంటుంది. ఉపయోగించడానికి ఉత్తమ వైర్ వైర్ ఒక ఘన కండక్టర్. మీరు చిక్కుకున్న కండక్టర్లు ఉపయోగిస్తే, రద్దు చేయగల శక్తి క్లిప్పుకోన్ని తంతులను తగ్గించబడానికి అనుమతించవచ్చు. అంతేకాకుండా, ఒంటరిగా ఉన్న వైర్ కొంచెం "క్ర్రెస్" చేస్తుంది, ఇది ఘన కనెక్టన్ కోసం అనుమతించదు. అయితే, రెండు రకాల కండక్టర్లను వివిధ వ్యవస్థలలో ఉపయోగిస్తారు. ఒక పంచ్ డోన్ సాధనాన్ని ఉపయోగించి కనెక్టన్ చేయబడుతుంది. కొన్ని ప్యాచ్ ప్యానెల్ తయారీదారులు ఒక తీసివేత క్యాప్చు సరఫరా చేస్తారు, ఇది ఒక సాధనం యొక్క ఉపయోగం లేకుండా ఒకేసారి పలు తీగలు అంతమవుతుంది. కొన్ని సాధనాలు వివిధ తోలగింపులతో, (అంటే 66 భాక్, 110 భాక్, మొదలైనవి) తో ఉపయోగపడే వివిధ బిట్లను ఉపయోగించుకుంటాయి. కేవలం crimping రకం ముగింపు వంటి, మీరు చేస్తున్న రద్దు రకం కోసం సరైన బిట్ ఉపయోగించడానికి ముఖ్యం.

4. **Direct Connection (Utility Block/ Screw Terminals):** This type of termination has several names. Utility block, barrier strip, or screw terminals are just a few. This type of termination can use either solid or stranded conductors. It allows for easy termination as well as quick changing of wire in the future. The main point to remember about a screw connection is to strip back the insulation only to the amount of conductor that will wrap around the screw and to place the wire in the same direction as the screw turns when tightening. This will "pull" the wire in tighter as the screw tightens. If you wrap the wire around the screw opposing the tightening rotation of the screw, the wire will be pulled outward and will become unwrapped around the screw.


4. ఫైరెక్స్ కనెక్టన్ (యుటిలిటీ భాక్ / స్రూ చెరిస్టర్): ఈ రకమైన రద్దు అనేక పేర్లను కలిగి ఉంటుంది. యుటిలిటీ భాక్, అవరోధ ప్రైప్, లేదా స్రూ చెరిస్టర్ కేవలం కొన్ని. ఈ రకమైన రద్దు ఘన లేదా ఒంటరి కండక్టర్లను ఉపయోగించవచ్చు. భవిష్యత్తులో సులభంగా వైపుల్యంతో పాటు వైర్ త్వరితంగా మారుతుంది. ఒక స్రూ కనెక్టన్ గురించి గుర్తుంచుకోవలసిన ప్రధాన విషయం ఏమిటంటే, స్రూ చుట్టూ చుట్టుబడి, తీరిప్పినప్పుడు స్రూ మారినప్పుడు అదే దిశలో వైర్ ను ఉంచే కండక్టర్ మొత్తానికి మాత్రమే ఇన్సులేషన్ను వాడతారు. స్రూ మాసివేసేటప్పుడు ఇది కరినమైన వైర్ "తీసివేస్తుంది. మీరు స్రూ యొక్క బిగించడం బ్రమణ ప్రత్యామ్రితమై స్రూ చుట్టూ వైర్ మాసివేయాలని ఉంటే, వైర్ బాహ్య ఉపసంహరించుకుంది మరియు స్రూ చుట్టూ unwrapped అవుతుంది.

Multimeter మల్టిమీటర్

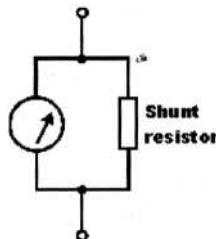
ANALOGUE MULTIMETER, (VOM OR VOA)

The analog or analogue multimeter often called a VOA meter for measuring Voltages in Volts, Current in Amps and Resistance in Ohms measurements or a VOM - Volts Ohm Meter.

ఒట్లాన్ కొలతలు లేదా ఒక VOM - వోల్ట్మీటర్ లో వోల్ట్మీటర్, కరెంట్ జన్ ఆమ్స్ ను మరియు రెసిస్టెన్స్ ను వోల్టేజ్ ను కొలిచే కోసం అనలాగ్ లేదా అనలాగ్ మల్టిమీటర్ తరచూ ఒక VOA మీటర్ పిలువబడుతుంది.

Principle of operation of Analog Multi-meter - The analogue VOA meter or VOM is based around the moving coil galvanometer.

The meters will have a full scale deflection, FSD, i.e. the maximum reading calibrated on the scale of a certain current. Typically this might be a value of $50\mu\text{A}$. The functionality of the basic meter is then extended by adding series and shunt resistors to enable voltage and current to be measured.

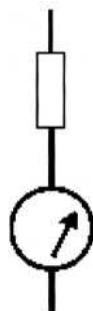

అనలాగ్ మల్టి-మీటర్ యొక్క ఆపరేషన్ యొక్క సూత్రం - అనలాగ్ VOA మీటర్ లేదా VOM కదిలే కాయల్ గాల్యోమీటర్ చుట్టూ ఆధారపడి ఉంటుంది.

మీటర్ పూర్తి ప్రాయిల్ విక్సేపం ఉంటుంది, FSD, అనగా గరిష్ట పరసం నిర్దిష్ట ప్రాయిల్ స్కేల్ చేయబడుతుంది. సాధారణంగా ఇది $50\mu\text{A}$ విలువ కావచ్చు. వోల్టేజ్ మరియు

ప్రస్తుత కొలవడాన్ని ఎనేబుల్ చెయ్యడానికి సిరీస్ మరియు షంట్ రెసిస్టర్లు జోడించడం ద్వారా ప్రాథమిక మీటర్ యొక్క కార్బాచరణ విస్తరించబడుతుంది.

- **Extending range of a meter for current measurements:** To extend the current ranges of a basic analogue meter, a resistor is placed in parallel with the meter (This is known as Shunt Resistor). In this way the shunt resistor takes current and for the same overall current flowing through the meter, more can flow through the overall circuit.

How to calculate the value of shunt resistor- The value of the shunt resistor is easy to calculate using Ohm's law. Using this it can be determined that the proportion of the current flowing in each leg is inversely proportional to the resistance. This if the moving coil meter has a full scale deflection of $50 \mu\text{A}$ and a resistance of $2 \text{k}\Omega$ for a 1mA FSD, 0.95mA needs to flow in the shunt resistor for the same voltage across the shunt resistor and the meter itself. Therefore the resistance of the shunt resistor needs to be: $5 / 95 \times 2 \text{k}\Omega = 105.3 \Omega$.



Analogue amp meter using a shunt resistor for higher current capability

ప్రస్తుత కొలతలకు ఒక మీటర్ విస్తరించిన పరిధి: ఒక ప్రొఫెషనల్ అనలాగ్ మీటర్ యొక్క ప్రస్తుత పరిధులను విస్తరించడానికి, ఒక నిరోధకం మీటర్లో సమాంతరంగా ఉంచుతారు (ఇది షంట్ రెసిప్షన్ పిలువబడుతుంది). ఈ విధంగా షంట్ రెసిప్షన్ ప్రస్తుత మరియు ప్రస్తుత మొత్తంలో మీటర్ ద్వారా ప్రవహిస్తుంది, మరింత మొత్తం సర్క్యూట్ ద్వారా ప్రవహిస్తుంది.

షంట్ నిరోధకం యొక్క విలువను లెక్కించడం ఎలా - షంట్ నిరోధకం యొక్క విలువ Ohr's చట్టం ఉపయోగించి లెక్కించడానికి సులభం. దీనిని ఉపయోగించి, ప్రతి పాదంలో ప్రస్తుత ప్రవాహం యొక్క నిష్పత్తి ప్రతిఫుటనకు విరుద్ధంగా ఉంటుంది. ఈ కదిలే కాయల్ మీటర్ యొక్క పూర్తి ప్రవాహాను విశ్లేషించి 50 μ A మరియు ఒక 1mA FSD కోసం 2 k Ω ప్రతిఫుటన కలిగి ఉంటే, 0.95 mA షంట్ రెసిప్షన్ మరియు మీటర్ అంతటా అదే వోల్టేజ్ కోసం షంట్ రెసిప్షన్ ప్రవాహం అవసరం. అందువల్ల షంట్ నిరోధకం యొక్క నిరోధం ఉండాలి:

- **Extending the range for voltage measurements:** For voltage measurements, resistors are placed in series with the meter.

Analogue voltmeter using a moving coil meter

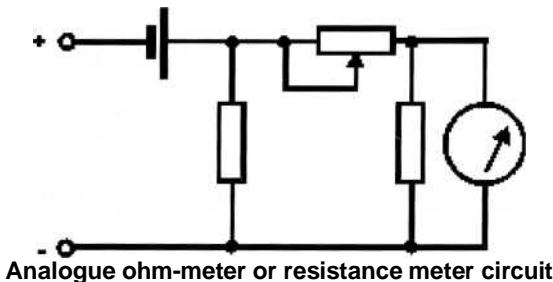
It is easy to calculate the value for the resistor. Knowing the resistance of (hr moving coil meter and its full scale deflection, it is possible to use Ohm's law to calculate the required values.

For example take a moving coil meter with a 50 pA FSD and a coil resistance of 2k Ω . For a voltage of 10 volts to enable 50pA to flow the total resistance must be $V/I = R$ or $10 / 50 \times 10^{-6}$

= 200 kΩ. Thus the series resistor required is 200 kΩ **11 kΩ** i.e. 198 kΩ

నిరోధకం కోసం విలువను గణించడం సులభం. (Hr కదిలే కాయల్ మీటర్ మరియు దాని పూర్తిషాయి విక్షేపం యొక్క నిరోధకత తెలుసుకున్నది, అవసరమైన విలువలను లెక్కించుటకు ఒం యొక్క నియమాన్ని వాడటానికి సాధ్యమే.

ఉదాహరణకు 50 pA FSD మరియు ఒక కాయల్ నిరోధక $u1\ 2k\Omega$ కదిలే కాయల్ మీటర్ పటుతుంది. మొత్తం నిరోధకతకు 50pA ప్రవాహాన్ని అందించడానికి $10\ \text{వోల్టు}\ \text{వోల్టేజ్}$ కోసం $V / 1 = R$ లేదా $10/50 \times 1-6 = 200\text{k}\Omega$ ఉండాలి. అందుచే ఈ సిరీస్ నిరోధకం అవసరం $200\ \text{k}\Omega$ $11\ \text{k}\Omega$ i.e. $198\ \text{k}\Omega$


- **Resistance capability for a VOA meter:** In order to provide the resistance measurement capability, an additional battery is required. This provides a current source to drive current through the external resistor. The amount of current flowing provides an indication of the resistance.

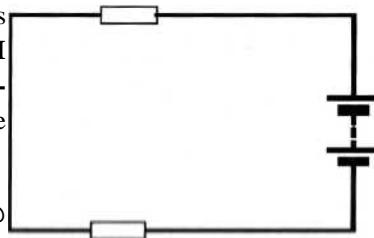
When making resistance measurements using an analogue multimeter, it is found that the high resistance indications are at the left hand section of the meter, i.e. when less current is flowing, and the low values of resistance are indicated at the right hand end of the meter scale, because a higher current flows. This may be a little confusing at first, but one quickly becomes accustomed to this. When using a resistance measurement on an analogue multimeter or analogue VOA meter, it is first necessary to «zero» the meter. This is needed to calibrate out any variations in the battery voltage. It is achieved simply by sorting out the two analogue multimeter probes and adjusting the control normally labelled «Zero» for zero ohms. Once this has been achieved the meter can be used accurately. A further point to note is that the negative terminal of the analogue multimeter is positive to the positive terminal, i.e. the polarity on the terminals is the opposite of what might normally be expected. For most measurements this is not of any consequence, although for some measurements of semiconductors it will have a bearing.

VOA మీటర్ కోసం నిరోధక సామర్యం: ప్రతిషుటన కొలత సామర్యాన్ని అందించడానికి, అదనపు బ్యాటరీ అవసరం. ఇది ప్రస్తుత బాహ్య మండలం ద్వారా ప్రస్తుత నడవడానికి ప్రస్తుత మూలాన్ని అందిస్తుంది. ప్రస్తుత ప్రవాహం యొక్క మొత్తం ప్రతిషుటన యొక్క సూచనను అందిస్తుంది.

ఒక అనలాగ్ మల్టిమీటర్ ఉపయోగించి ప్రతిషుటన కొలతలు చేస్తున్నప్పుడు, అధిక నిరోధక సూచనలు మీటర్ యొక్క ఎడమ చేతి విభాగంలో ఉంటాయి, అనగా తక్కువ ప్రస్తుత ప్రవాహం ఉన్నప్పుడు, మరియు ప్రతిషుటన యొక్క తక్కువ విలువలు మీటర్ యొక్క కుడి వైపున సూచించబడతాయి శాయి, ఎందుకంటే అధిక ప్రస్తుత ప్రవాహం.

ಇದಿ ಮೊದಲ ಕೊಂಚೆಂ ಗಂದರಗೆಳಂಗಾ ಉಂಡವಚ್ಚು, ಕಾನೀ ತ್ವರಗಾ ಒಕದಾನಿಕಿ ಇದಿ ಅಲವಾಟುಗಾ ಉಂಟುಂದಿ. ಒಕ ಅನಲಾಗ್ ಮಲ್ಟಿಮೀಟರ್ ಲೇದಾ ಅನಲಾಗ್ VOA ಮೀಟರ್ನೆ ನಿರ್ದಿಷ್ಟತ್ವ ಕೊಲತನು ಉಪಯೋಗಿಂಚಿನಪ್ಪುಡು, ಮೊದಲ ಇದಿ «ಸುನ್ನಾ» ಮೀಟರ್ಕು ಅವಸರಂ. ಬ್ಯಾಟರ್ ವೋಲ್ವೇಜ್‌ಲೋ ಎದ್ದೆನಾ ವೈವಿಧ್ಯಾಲನು ಸಾಮರ್ಥ್ಯನ್ನಿ ಚೂಪಡಾನಿಕಿ ಇದಿ ಅವಸರಮವುತ್ತಂದಿ. ಇದಿ ಕೇವಲಂ ರೆಂಡು ಅನಲಾಗ್ ಮಲ್ಟಿಮೀಟರ್ ವೆರ್ಬೆನ್‌ನ್ನು ಕ್ರಮಬಂಧಿಕರಿಂಚದಂ ಮರಿಯ ನಿಯಂತ್ರಣನು ಸರ್ಪಬಾಟು ಚೇಯಡಂ ದ್ಯಾರಾ ಸಾಧಿಂಚವಚ್ಚು, ಇದಿ ಸಾಧಾರಣಂಗಾ ಸುನ್ನಾ ಒಮ್ಮೆ ಕೋಸಂ "ಜೆರ್ಬ್" ಗಾ ಪಿಲುವಬಡುತ್ತಂದಿ. ಇದಿ ಸಾಧಿಂಚಿನ ತರುವಾತ ಮೀಟರ್ ಸರಿಗ್ಗಾ ಉಪಯೋಗಿಂಚಬಡುತ್ತಂದಿ. ಅನಲಾಗ್ ಮಲ್ಟಿಮೀಟರ್ ಯೊಕ್ಕ ಪ್ರತಿಕೂಲ ಚೆರ್ಕುನಲ್ ಸಾನುಕೂಲ ಚೆರ್ಕುನಲ್ಲು ಸಾನುಕೂಲಂಗಾ ಉಂಟುಂದಿ, ಅನಗಾ ಚೆರ್ಕುನಲ್ನೋ ಧೀರುವಣತ ಸಾಧಾರಣಂಗಾ ಉಪಯೋಗಿಂಚಿನದಾನಿಕಿ ವ್ಯತಿರೇಕಂಗಾ ಉಂಟುಂದಿ. ದಾಲಾ ಕೊಲತಲಕು ಇದಿ ಏ ಪರ್ಯವಸಾನಂಗಾನ್ನೆನಾ ಕಾದು, ಕೋನ್ನಿ ಕೊಲತಲು ಗಲ ಸೆಮೀಕಂಡಷ್ಟರ್‌ನು ಇದಿ ಬೆರಿಂಗ್ ಉಂಟುಂದಿ.

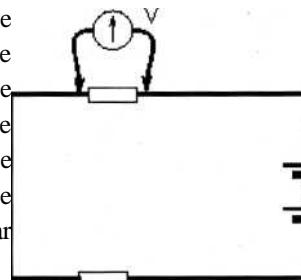
It can be seen that by adding the shunt and series resistors as well as a resistor network and battery, for resistance, it is possible to provide a considerable amount of **additional** capability for the basic analogue moving coil meter.


ಪಂಟ್ ಮರಿಯ ಸೀರೀಸ್ ರೆಸಿಸ್ಟರ್ ಅಲಾಗ್ ರೆಸಿಸ್ಟರ್ ನೆಟ್‌ವರ್ಕ್ ಮರಿಯ ಬ್ಯಾಟರ್‌ನಿ ನಿರ್ದಿಷ್ಟಿಸಿದಾನಿಕಿ, ಪ್ರತಿಷ್ಠಿತನನು ಜೋಡಿಂಚದಂ ದ್ಯಾರಾ, ವೆರಾಫ್ರಿಕ ಅನಲಾಗ್ ಕದಿಲೆ ಕಾಯಲ್ ಮೀಟರ್ ಕೋಸಂ ಅದನ್ನು ಸಾಮರ್ಥ್ಯನ್ನಿ ಗಣನೀಯಮೈನ ಫ್ರಾಯಲ್ ಅಂದಿಸ್ತುಂದಿ.

STUDY OF DIFFERENT CONTROLS ON MULTIMETER

MULTIMETER ಪ್ರೈ ವಿವಿಧ ನಿಯಂತ್ರಣಲ ಅಧ್ಯಯನಂ

Making measurements using an analogue multimeter


When using an analogue multimeter, measurements for voltage, current and resistance need to be made **III** different ways. To illustrate the way in which (These - different tests can be made using an analogue Multimeter, the simple circuit shown below will be

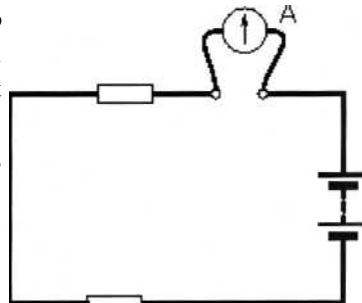
ఒక అనలాగ్ మల్టీమీటర్ ఉపయోగించి కొలతలు తయారు

ఒక అనలాగ్ మల్టీమీటర్ ఉపయోగిస్తున్నప్పుడు, వోల్టేజ్ కోసం కొలతలు, ప్రస్తుత మరియు ప్రతిఫలన **III** భిన్న మాధాలను తయారు చేయాలి. ఈ విధంగా వివరించడానికి (ఈ - వివిధ పరిశ్శలు ఒక అనలాగ్ మల్టీమీటర్ ఉపయోగించి తయారు చేయవచ్చు, కీరింద చూపిన సాధారణ సర్క్యూట్ ఉంటుంది

1 Voltage measurements: The voltage measurement is the easiest form of measurement to make using an analogue multimeter. The two leads need to be connected across the area of the circuit where the voltage measurement is to be made. Typically the "Common" or "COM" connection on the multimeter is used for the negative voltage end of the measurement and the connection marked "Volts" or similar goes to the positive end of the measurement.

For some high or low voltage measurements, there may be a separate connection available and this should be chosen.

Once the relevant connections of the multimeter have been chosen Select the "VOLTAGE" and the switch can be turned to the correct range and the measurement taken.

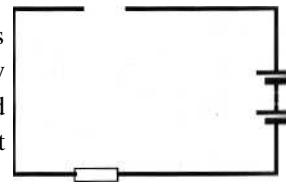
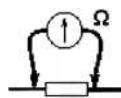

వోల్టేజ్ కొలతలు: వోల్టేజ్ కొలత అనలాగ్ మల్టీమీటర్లు ఉపయోగించేందుకు సులభమైన కొలత. వోల్టేజ్ కొలత ఏర్పాటు చేయవలసిన వలయ వీరాంతంలోని రెండు లీధ్ధను అనుసంధానించాలి. సాధారణంగా మల్టీమీటర్లైన్ "కామన్" లేదా "COM" కనెక్టన్ యొక్క ప్రతికూల వోల్టేజ్ ముగింపుకు మరియు "వోల్ట్" లేదా కనెక్టన్ సూచించబడిన కనెక్టన్ యొక్క సానుకూల ముగింపుకి వెళ్లింది.

కొన్ని అధిక లేదా తక్కువ వోల్టేజ్ కొలతలు కోసం, ప్రత్యేక కనెక్టన్ అందుబాటులో ఉండవచ్చు మరియు ఇది ఎన్నుకోవాలి.

మల్టీమీటర్ యొక్క సంబంధిత కనెక్టన్లు ఎన్నుకోబడిన తర్వాత "VOLTAGE" ని ఎంచుకోండి మరియు స్పీచ్ సరైన పరిధిలోకి మార్చుబడుతుంది మరియు కొలత తీసుకుంటారు.

- **Current measurements:** When using a multimeter to make a current measurement, the meter is placed in series with the circuit where the current measurement is to be made. The

“Current” mode is selected and the switch is selected to the desired range.



- ప్రస్తుత కొలతలు: ప్రస్తుత కొలత చేయడానికి ఒక మల్టిమీటరు ఉపయోగించినప్పుడు, మీటరు

ప్రస్తుత శ్రేణిని తయారుచేసే సర్క్యూట్ సిరీస్ ఉంచుతారు. ది

ప్రస్తుత “మోడ్” ఎంచుకోబడింది మరియు స్విచ్ కావలసిన శ్రేణికి ఎంపిక చేయబడుతుంది.

- **Resistance measurements:** For any resistance measurement, the component to be measured should be removed from the circuit as other paths will be present that will distort the reading. Also any power remaining with in the circuit will add to the inaccuracies. Never measure resistance when the circuit is powered, as power from the circuit will not only distort the reading, but could damage the meter.

Using analogue test meters can be every bit as easy as using digital multimeters. Their accuracy is normally more than adequate and with a little care and understanding in their use they provide an excellent multimeter.

- ప్రతిఫుటన కొలతలు: ఏదైనా నిరోధకత కొలత కోసం, కొలవవలసిన భాగాన్ని ఇతర సర్క్యూట్ నుండి తోలగించాలి

పరిణాలు వక్రీకరించే మాధ్యాలు ఉన్నాయి. సర్క్యూట్ మిగిలి ఉన్న ఏ శక్తి కూడా దోషాలను జోడిస్తుంది. సర్క్యూట్ శక్తితో ఉన్నప్పుడు నిరోధకతను కొలవకుండాం, సర్క్యూట్ నుండి అధికారం చదివేను మాత్రమే కాకుండా, మీటరు నాశనం చేయగలదు.

అనులగ్గ పరీక్ష మీటర్ ఉపయోగించి డిజిటల్ మల్టిమీటర్లు ఉపయోగించి ప్రతి బిట్ సులభంగా ఉంటుంది. వారి ఖచ్చితత్వం సాధారణంగా సరిపోతుంది మరియు వారి

ఉపయోగంలో కొంచెం సంరక్షణ మరియు అవగాహనతో వారు అద్యుత్మైన మల్టీమీటరును అందిస్తారు.

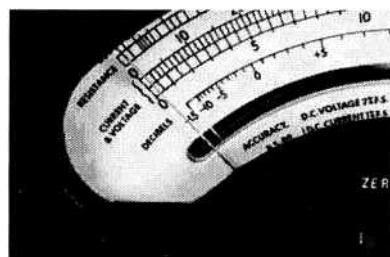
PRECAUTIONS IN USING THE ANALOG MULTIMETERS

ANALOG MULTIMETERS ఉపయోగించడంలో జాగ్రత్తలు

Parallax errors

One cause of errors on an analogue multimeter, or any analog meter for that matter is parallax errors. This is an important concept when using an analogue multimeter.

When viewing the meter, the eye should be at right angles to the plane of the meter back markings. In this way there is no error from viewing the needle at an angle.


Some high end professional meters such as the AVO have a mirror in the scale. In this way it is possible to assess whether the eye is directly in front of the scale - when the eye is viewing correctly, it will not be possible to see the reflection as it is masked out by the needle itself. The offset view below indicates this.

పారలాక్స్ లోపాలు

ఒక అనలాగ్ మల్టీమీటర్లో లోపాల యొక్క ఒక కారణం, లేదా ఆ మాల్టీ కోసం ఏ అనలాగ్ మీటర్ పారలాక్స్ లోపాలు. ఒక అనలాగ్ మల్టీమీటర్ను ఉపయోగిస్తున్నప్పుడు ఇది ఒక ముఖ్యమైన భావన.

మీటరును చూసేటప్పుడు, meter వెనుక గుర్తుల యొక్క తలవైపు కన్ను లంబ కోణాలలో ఉండాలి. ఈ విధంగా సూది అల్ కోణం చూడకుండా ఎటువంటి లోపం లేదు.

AVO వంటి కొన్ని అధిక ముగింపు వేరొఫెషనల్ మీటర్లు పొయిలో అధ్యం ఉంటుంది. కంటి సరిగ్గా చూసేటప్పుడు కంటి ప్రత్యేకంగా ఉండే లేదో ఈ విధంగా అంచనా వేయడం సాధ్యపడుతుంది, అది సూది ద్వారా ముసుగుతో ఉన్నట్లు ప్రతిబింబం చూడటం సాధ్యం కాదు. కీరింద ఆఫ్సెట్ వీక్షణ ఈ సూచిస్తుంది.

In addition to the mirror, often the needle is made thin in the place of the scale, bill much larger in the plane at right angles to the scale. In this way it has sufficient strength and it is also does not take much meter scale area.

అధంతో పాటు, తరచూ సూది ప్రదేశంలో సన్నగా చేయబడుతుంది, ఎత్తులో లంబ కోణంలో విమానం పెద్దదిగా ఉంటుంది. ఈ విధంగా అది తగినంత బలం కలిగి ఉంది మరియు ఇది చాలా మీటర్ స్కేల్ ఏరియా తీసుకోదు.

Using the correct range

Another concept in knowing how to use an analogue multimeter is that of knowing which range to use.

In terms of the view of the meter, the best accuracy is gained when the meter is towards the full scale deflection, FSD. In this way a given percentage change in the I fading gives the maximum and hence most visible change in meter deflection, and accordingly the most accurate reading.

However care has to be taken not to overload the meter by placing it on a range much too low for the reading to be taken. If this occurs the meter can swiftly move to I hr end-stop, and damage may occur if it is overloaded too much. It is always best to start well below the range expected to give full scale deflection and switch the range when everything has settled.

సరైన పరిధిని ఉపయోగించడం

అనలగ్ మల్టీమీటర్ ఎలా ఉపయోగించాలో తెలుసుకోవడంలో ఇంకొక భావన ఏ పరిధిని ఉపయోగించాలో తెలుసుకోవడం.

మీటర్ యొక్క దృక్కోణంలో, మీటర్ పూర్తి ప్లాయి విక్షేపం వైపుగా ఉన్నప్పుడు, FSD ఉత్తమమైన ఖచ్చితత్వం పొందింది. ఈ విధంగా నేను క్లీపించినప్పుడు ఇచ్చిన శాతం మార్పు గరిష్టం మరియు అందుచే మీటర్ విక్షేపణలో ఎక్కువగా కనిపించే మార్పును ఇస్తుంది మరియు అనుగుణంగా అత్యంత ఖచ్చితమైన పరిస్థితిని ప్రారంభించడానికి ఇది ఉత్తమంగా ఉంటుంది.

అయినప్పటికీ, చదివిన పరిస్థితిని కోసం చాలా తక్కువ పరిధిలో ఉంచడం ద్వారా మీటర్ అధికం చేయకుండా జాగ్రత్త తీసుకోవాలి. ఇది సంభవించినట్లయితే మీటర్ వేగంగా కదలగలదు, అది చాలా ఎక్కువ ఒవర్లోడ్ అయినట్లయితే సంభవించవచ్చు). పూర్తి ప్లాయి విక్షేపం ఇవ్వడం మరియు ప్రతిదీ షిరపడినప్పుడు శరేణి మార్పుడం వంటి అంచనా పరిధిని పూర్తిగా దిగువకు ప్రారంభించడానికి ఇది ఉత్తమంగా ఉంటుంది.

Practical Exercise: How to make Analogue

meter zero position adjustment

Analogue multimeters, and in fact any analogue moving coil meter will have a zero adjuster

This zero adjustment should not normally need to be touched, but it may vary slightly with time and temperature.

Adjustment should be made with the meter not in use and it should be gently |ul|iiMed with a screwdriver to ensure the meter is properly zeroed. Care should be taken to ensure that the eye is directly above the meter, and any mirror in the meter should be used to ensure that accuracy is maintained.

The adjustment should be undertaken with the meter level as if the meter is placed **horizontally**, for example, the zero position will change.

అనలగ్ మల్టిమీటర్లు, మరియు వాస్తవానికి ఏ అనలగ్ కదిలే కాయల్ మీటర్కు నున్న సర్పుబాటు ఉంటుంది

ఈ నున్న సర్పుబాటు సాధారణంగా తాకిన అవసరం లేదు, కానీ అది సమయం మరియు ఉష్టాగ్రత తో కొంధిగా మారవచ్చు.

మీటరు ఉపయోగంలో లేనప్పుడు సర్పుబాటు చేయవలసి ఉంటుంది మరియు మీటర్ ఖచ్చితంగా సరిగ్గా జరో చేయబడిందని నిర్ధారించడానికి ఒక ప్రూట్‌క్రైట్రో శాంతముగా వుండాలి. కన్ను నేరుగా మీటర్ పైన ఉన్నట్టు నిర్ధారిస్తుంది మరియు మధ్యష వరకు ఏదైనా అధ్యం ఖచ్చితత్వాన్ని నిర్వహిస్తుందని నిర్ధారించడానికి ఉపయోగించబడుతుంది.

మీటర్ పోయిని మీటర్ పోయిని సమాంతరంగా ఉంచినట్టయితే, నున్న పోనం మారుతుంది కనుక నేను సరిగ్గా సర్పుబాటు చేయాలి.

0fl Adjustment

When using a multimeter for resistance measurements it is necessary to adjust the zero ohm position. This is required to compensate for a number of variations from small tolerances in the components in the meter to the state of the battery within the meter that is used to supply the current needed for the measurement.

ప్రతిఫుటన కొలతలకు ఒక మల్టిమీటర్ ఉపయోగిస్తున్నప్పుడు, నున్న ఒం పోనం సర్పుబాటు చేయడానికి అవసరం. కొలతకు అవసరమైన ప్రస్తుతాన్ని సరఫరా చేయడానికి ఉపయోగించే మీటర్లోని బ్యాటరీ యొక్క స్థితిలో మీటర్లోని భాగాలలో చిన్న పరిమితుల నుండి అనేక వైవిధ్యాలను భర్తీ చేయాలిన అవసరం ఉంది.

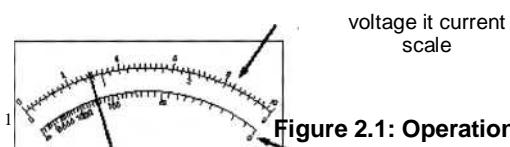


Figure 2.1: Operational controls on a digital multimeter

Scale on a typical analogue multimeter

To undertake the ohm-meter zeroing, the test probes for the meter should be shorted together to give a zero ohm resistance between the terminals of the meter, and the small “Ohms Adjustment” control should be used to give full scale deflection on the meter that corresponds to the zero ohms position.

Note that on an analogue meter zero ohms corresponds to full scale deflection, and increasing resistance gives a lower level of deflection. In this way the meter scale is reversed - higher values of resistance are to the left of the scale and lower ones to the right.

Ohm-meter zeroing చేపట్టేందుకు, ఆ మీటర్ కోసం పరీక్ష పేరోబ్స్ ముగుస్తుంది చేయాలి

కలిసి మీటర్ యొక్క తెరిక్కన్న మధ్య ఒక సున్నా ఒంమ్ నిరోధకతను ఇవ్వడానికి, మరియు చిన్న “ఒంమ్ అడ్డషైంట్” నియంత్రణ పూర్తి ప్రాయిలో విక్షేపం ఇవ్వడానికి వాడాలి సున్నా ఒమ్మన ప్రాణానికి అనుగుణంగా ఉండే మీటర్.

ఒక అనలాగ్ మీటర్ సున్నా ఒంలు పూర్తి ప్రాయి విక్షేపంకి అనుగుణంగా ఉంటాయి, మరియు పెరుగుతున్న ప్రతిఫుటన తక్కువ ప్రాయి విక్షేపం ఇస్తుంది. ఈ విధంగా మీటర్ సేక్కల తారుమారు - ప్రతిఫుటన యొక్క అధిక విలువలు ప్రాయి ఎదమ మరియు తక్కువ వాటిని ఉన్నాయి కుడి.

Finishing using multimeter

When the measurements using the analogue multimeter have been completed, it is always wise to return the meter to its off position. This prevents the meter being picked up and connected for a voltage measurement, when, for example it has been left set for a current measurement. In this case excess current could flow through the meter causing damage to the meter and also with the possibility of damage to the circuit under test.

If no specific “Off” position is available, after use the multimeter should be switched to the highest voltage range.

అనలాగ్ మల్టీమీటర్లు ఉపయోగించే కొలతలు పూర్తయినప్పుడు, అది అతను దాని ఆఫ్ షాసం కు మీటర్ తీరిగి ఎల్లప్పుడూ తెలివైన. ఇది మీటర్లు ఎన్నుకుంటుంది అప్ మరియు ఒక వోల్టేజ్ కొలత కోసం కనెక్ట్, ఉదాహరణకు, ఇది సెట్ వదిలి ప్రస్తుత కొలత కోసం. ఈ సందర్భంలో మితిమీరిన విధ్యుత్తు మీటర్ ద్వారా ప్రవహిస్తుంది మీటర్లు నష్టాన్ని కలిగించి, సర్వాంశులు నష్టం కలిగించగలదు పరీక్షలో ఉంది. ప్రత్యేకమైన "ఆఫ్" షాసం అందుబాటులో లేనట్లయితే, మల్టీమీటర్ ఉపయోగించిన తర్వాత స్వీచ్ చేయాలి అత్యుద్ధిక వోల్టేజ్ శరేణికి.

The digital multimeter, DMM, is one of the most common items of test equipment used in the electronics industry today.

While there are many other items of test equipment that are available, the multimeter is able to provide excellent readings of the basic measurements of amps, volts and ohms.

In addition to this the fact that these digital multimeters use digital and logic technology, means that the use of integrated circuits rather than analogue techniques, enables many new test features to be embedded in the design.

As a result, most of today's digital multimeters incorporate many additional measurements that can be made.

ఎలక్ట్రానిక్ మల్టీమీటర్, డిఎమ్ఎం, నేడు ఎలక్ట్రానిక్ పరిశ్రమలో ఉపయోగించే చెప్పి సాపుగోరి యొక్క అత్యంత సాధారణ వస్తువులలో ఒకటి.

అందుబాటులో ఉన్న పలు పరికరాల పరీక్ష పరికరాలు అందుబాటులో ఉన్నప్పటికీ, మల్టీమీటర్ ఆంప్స్, వోల్ట్ మరియు ఒమ్స్ యొక్క ప్రాథమిక కొలతలు యొక్క అదృష్టతమైన రీడింగులను అందిస్తుంది.

దీనికి అదనంగా ఈ డిజిటల్ మల్టీమీటర్లు డిజిటల్ మరియు లాజిక్ చెక్కాలజీని ఉపయోగిస్తాయి, అనగా అనలాగ్ చెక్కిక్న కాకుండా ఇంటిగీరేచెడ్ సర్వాంశు ఉపయోగం, రూపకల్పనలో ఎన్నో కొత్త పరీక్ష లక్షణాలను ప్రారంభిస్తుంది.

ఫలితంగా, నేటి డిజిటల్ మల్టీమీటర్లలో అధికభాగం అనేక అదనపు కొలతలు కలిగి ఉంటాయి.

DMM facilities

While the facilities that a digital multimeter can offer are much greater than their analogue predecessors, the cost of DMMs is relatively low. DMMs are able to offer as standard the basic measurements that would typically include:

ఈక డిజిటల్ మల్టిమీటర్ అందించే సౌకర్యాలు వారి అనలాగ్ కంచే ముందున్న వాటి కంచే ఎక్కువగా ఉంటాయి, DMM ల ఖర్చు తక్కువగా ఉంటుంది. DMM లు ప్రమాణంగా వీరాధమిక ప్రమాణాలను అందించే విధంగా ఉంటాయి:

- Current (DC)
- Current (AC)
- Voltage (DC)
- Voltage (AC)
- Resistance

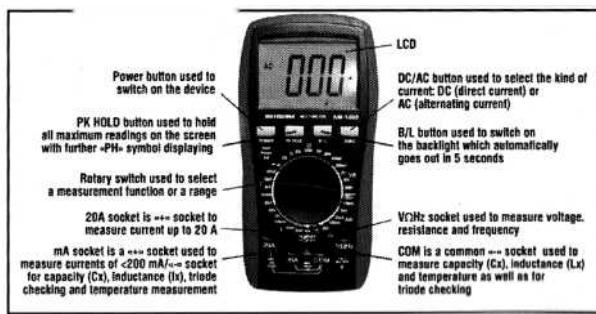
However, using integrated circuit technology, most DMMs are able to offer additional test capabilities. These may include some of the following:

ఎమైనప్పటికీ, ఇంటిగ్రేటెడ్ సర్క్యూల్ సాంకేతిక పరిజ్ఞానాన్ని ఉపయోగించి, చాలా DMM లు అదనపు పరీక్ష సామర్థ్యాలను అందించగలవు. ఇవి కీరింది వాటిలో కొన్ని ఉండవచ్చు:

- Capacitance
- Temperature
- frequency
- Transistor test - hfe, etc
- Continuity (buzzer)

While some of these additional test features may not be as accurate as those supplied by dedicated test instruments, they are nevertheless very useful, especially where approximate readings only are needed.

In addition to an increase in the number of basic measurements that can be made, refinements of some of the basic measurements are also available on some models, hence RMS multimeters are available. In many instances, AC waveforms use forms of average measurements that are then converted to RMS measurements using a form factor. This method of measurement is very dependent upon the shape of the waveform and as a result a true RMS digital multimeter may be required. In addition to the availability of a true RMS meter, similar refinements of the other basic measurements are also available in some instances.


ఈ అదనపు పరీక్ష లక్షణాలలో కొన్ని అంకితమైన పరీక్ష సాధనల ద్వారా సరఫరా చేయబడినవిగా ఖచ్చితమైనవి కాకపోయినా, వారు చాలా ఉపయోగకరంగా ఉంటారు, ఎసెపిరియట్టింగ్ సుమారుగా రీడింగులను మాత్రమే అవసరమౌతుంది.

వీరాధమిక కొలతల సంబ్యాను పెంచడంతోపాటు, కొన్ని సమూనాల్లో కొన్ని వీరాధమిక కొలతల యొక్క మెరుగుదలలు అందుబాటులో ఉన్నాయి, RMS మల్టిమీటర్లు అందుబాటులో ఉంటాయి. అనేక సందర్భాల్లో, ఎసి వేవ్యారమ్స్ రూపాలు సగటు

కొలతల రూపాలను ఉపయోగిస్తాయి, అప్పుడు వాటిని ఒక రూపం కారకంతో ఉపయోగించి RMS కొలతలుగా మార్పుబడతాయి. కొలత ఈ పద్ధతి తరంగ ఆకారం మీద చాలా ఆధారపడి ఉంటుంది మరియు ఫలితంగా నిజమైన RMS డిజిటల్ మల్టిమీటర్ అవసరమవుతుంది. నిజమైన RMS మీటర్ల లబ్బుతకు అదనంగా, ఇతర వీరాధమిక కొలతల యొక్క సారూప్య మెరుగుదలలు కొన్ని సందర్భాల్లో కూడా అందుబాటులో ఉన్నాయి.

DIGITAL MULTIMETERS

Familiarization with operation controls of digital Multi-meter Principle of operation of digital Multi-meter

In addition to the additional measurement capabilities, DMMs also offer flexibility in the way measurements are made. Again this is achieved because of the additional capabilities provided by the digital electronics circuitry contained within the digital multimeter. Many instruments will offer two additional capabilities:

అదనపు కొలత సామర్థ్యాలకు అదనంగా, DMM లు వారీ కొలతలను తయారు చేస్తాయి. డిజిటల్ మల్టిమీటర్లోని డిజిటల్ ఎలిక్ట్రానిక్స్ సర్క్యూట్ అందించిన అదనపు సామర్థ్యాల కారణంగా దీనిని సాధించవచ్చు. అనేక సాధనాలు రెండు అదనపు సామర్థ్యాలను అందిస్తాయి:

- Auto-range:** This facility enables the correct range of the digital multimeter to be selected so that the most significant digits are shown, i.e. a four-digit DMM would automatically select an appropriate range to display 1.234 mV instead of 0.012 V. Additionally it also prevent overloading, by ensuring that a volts range is selected instead of a millivolts range. Digital multimeters that incorporate an auto-range facility usually include a facility to 'freeze' the meter to a particular range. This prevents a measurement that might be on the border between two ranges causing the meter to frequently change its range which can be very distracting.

- **ఆటో-రేంజ్:** ఈ సదుపాయం డిజిటల్ మల్టీమీటర్ యొక్క సరైన పరిధిని అనుమతిస్తుంది చాలా ముఖ్యమైన అంకెలు చూపించబడతాయి, అనగా నాలుగు అంకెల అంశాలలుగా 1.22 mV బదులుగా 0.012V యొక్క 1.234 mV ను ప్రదర్శించడానికి తగిన శరేణిని ఎంపిక చేస్తుంది. అంతేకాక అదనంగా ఒకవర్డోడ్ చేస్తే, ఒక మిలివోల్ట్స్ శరేణికి బదులుగా ఒక వోల్ట్ శరేణిని ఎంచుకుంటుంది. . ఆటో-రేంజ్ సదుపాయాన్ని కలిగి ఉన్న డిజిటల్ మల్టీమీటర్లు సాధారణంగా ఒక నిర్దిష్ట పరిధికి మీటర్లు 'స్టంభింపజేసే' సౌకర్యం కలిగి ఉంటాయి. ఇది రెండు కొలతల మధ్య సరిహద్దులో ఉన్న కొలతను నిరోధిస్తుంది ఎందుకంచే మీటర్ తరచుగా దాని పరిధిని మార్చడం చాలా విలక్షణంగా ఉంటుంది.
- **Auto-polarity:** This is a very convenient facility that comes into action for direct current and voltage readings. It shows if the voltage of current being measured is positive (i.e. it is in the same sense as the meter connections) or negative (i.e. opposite polarity to meter connections). Analogue meters did not have this facility and the meter would deflect backwards and the meter leads would have to be reversed to correctly take the reading.
- **ఆటో-ధీరువణత:** ప్రత్యక్షంగా చర్య తీసుకోవడానికి ఇది చాలా సౌకర్యవంతమైన సౌకర్యం ప్రస్తుత మరియు వోల్టేజ్ రీడింగ్స్. ప్రస్తుత కొలత యొక్క వోల్టేజ్ సానుకూలంగా ఉంచే (అనగా మీటర్ కనెక్టన్లు అదే అర్ధంలో ఉంటుంది) లేదా ప్రతికూల (అనగా మీటర్ కనెక్టన్లకు వ్యతిరేక ధీరువణ). అనలాగ్ మీటర్లు ఈ సదుపాయం కలిగి లేవు మరియు మీటర్ వెనక్కి మళ్ళిస్తుంది మరియు మీటర్ లీడ్స్ సరిగ్గా చదవడానికి తీసుకోవలసి ఉంటుంది.

DMM measurements

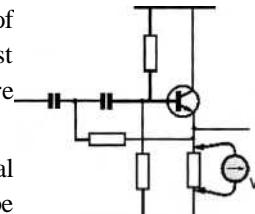
Digital multimeters can make a variety of different measurements. Using them is normally very easy, but the right techniques must be adopted to make the measurements correctly.

This DMM tutorial includes pages outlining the techniques required for making various measurements.

డిజిటల్ మల్టీమీటర్లు వేర్వేరు కొలతలను చేయవచ్చు. వాటిని ఉపయోగించడం సాధారణంగా చాలా సులభం, కానీ కొలతలు సరిగ్గా చేయడానికి సరైన పద్ధతులు తీసుకోవాలి. ఈ DMM ట్యూటోరియల్ వివిధ కొలతలను చేయడానికి అవసరమైన సాంకేతికతలను వివరించే పేజీలు ఉన్నాయి.

- **How to use a DMM:** There are some basic hints and tips on using a DMM that apply across most DMM measurements.
- **Voltage measurements:** The voltage measurement is one of the most widely used and most simple DMM measurements.

Practical Exercise: How to use a digital multimeter for AC and DC voltage measurement


One of the most widely used measurements for a DMM is that of voltage. Knowing how to use a digital multimeter to make the best voltage measurements can ensure the most accurate measurements are made.

When making a voltage measurement the probes from the digital multimeter are placed across the points where the voltage is to be measured.

ఒక DMM కోసం విస్తుతంగా ఉపయోగించే కొలతలు ఒకటి

వోల్టేజ్ యొక్క ఉంది. ఉత్తమమైన వోల్టేజ్ కొలతలు చేయడానికి ఒక డిజిటల్ మల్టీమీటర్లు ఎలా ఉపయోగించాలో తెలుసుకోవడం చాలా ఖచ్చితమైన కొలతలు చేయగలదని నిర్ధారించగలదు.

ఒక వోల్టేజ్ కొలత చేస్తున్నప్పుడు డిజిటల్ మల్టీమీటర్ నుండి వచ్చే పోర్ట్స్ వోల్టేజ్ కొలిచే ప్రదేశాలలో ఉంచుతారు.

A typical digital multimeter voltage measurement

- **Current measurement:** Current measurements are a little more complicated requiring the digital multimeter to be placed within the circuit

ప్రస్తుత కొలతలు డిజిటల్ మల్టీమీటర్లు సర్వాంగి లోపల ఉంచే కొంచెం క్లిష్టంగా ఉంటాయి

- **How to use a digital multimeter for current:**

When making a current measurement, the current flowing within the circuit needs to be detected. The traditional method of achieving this is to break the circuit and place the digital multimeter acting as a current meter in circuit. In this way the current flows through the meter, the level of current can then be detected and displayed.

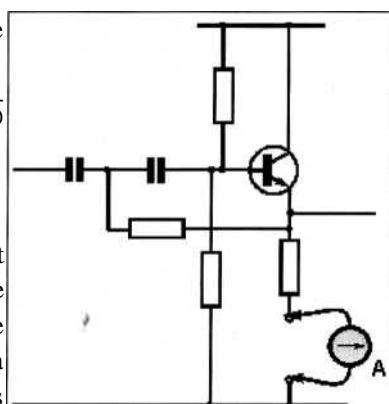


Figure 2.2: A typical digital multimeter current measurement

ప్రస్తుత కొలత చేస్తున్నప్పుడు, సరూచ్యాట్ ప్రస్తుత ప్రవాహం గుర్తించబడాలి. సరూచ్యాట్ ను విచ్చిన్నం చేసి డిజిటల్ మల్టిమీటరు సరూచ్యాట్ ప్రస్తుత మీటర్లా నటిస్తే సాంప్రదాయ పద్ధతి సాధించడం. ఈ విధంగా, మీటర్ ద్వారా ప్రవహించే ప్రస్తుత ప్రవాహం ప్రస్తుత షాయిని గుర్తించి ప్రదర్శించబడుతుంది.

- **Resistance measurement:** It is often necessary to measure the resistance of a component. This is easy to accomplish, but certain precautions must be observed.
- ఇది ఒక భాగం యొక్క ప్రతిముటనను కొలిచేందుకు తరచుగా అవసరం. ఇది సాధించడానికి సులభం, కానీ కొన్ని జాగ్రత్తలు గమనించాలి.
-
- **How to use a digital multimeter for resistance:** When making a resistance measurement with a digital multimeter, it is necessary to place the item under test across the probes of the multimeter. It must be removed from the circuit, otherwise stray conduction paths will be present. Even if measuring continuity the unit must be off and power removed. Should any voltages be present, these will at the very least distort the readings, and at worst they could damage or even destroy the instrument. Care must be taken.
- ఒక డిజిటల్ మల్టిమీటర్ ఒక నిరోధక కొలత చేస్తున్నప్పుడు, మల్టిమీటర్ యొక్క ఏరోబ్ అంతటా పరీక్షలో ఉన్న అంశాన్ని ఉంచడం అవసరం. ఇది సరూచ్యాట్ నుండి తొలగించబడాలి, లేకుంటే చెదురుమదురు కండర మాధ్యాలు ఉండవ. కొనసాగింపు కొలిచే ఉన్నపుటికీ యూనిట్ ఆఫ్ ఉండాలి మరియు శక్తి తొలగించబడుతుంది. ఏ వోల్టేజీలు ఉండవచ్చు, ఇవి చదివి చాలా తక్కువగా చదివి వినిపించాయి, మరియు మౌరంగా అవి వాయిద్యం లేదా నాశనం చేయగలవు. జాగ్రత్త తీసుకోవాలి.

Using a DMM for other measurements

In addition to the basic voltage, current and resistance measurements, many digital multimeters offer a range of other measurements that they can make. The actual measurements depend upon the actual DMM being used. However knowing how to use the digital multimeter to make these measurements means that the results can be assessed within the capabilities of the instrument.

వీరాధమిక వోల్టేజీపాటు, ప్రస్తుత మరియు నిరోధక కొలతలు, అనేక డిజిటల్ మల్టిమీటర్లు ఇతర కొలతల పరిధిని అందిస్తాయి. అనలు కొలతలు వాస్తవమైన DMM ఉపయోగించబడుతున్నాయి. అయితే ఈ కొలతలు చేయడానికి డిజిటల్ మల్టిమీటరు ఎలా ఉపయోగించాలో తెలుసుకోవడం ఫలితంగా పరికరం యొక్క సామర్థ్యాల్లో ఫలితాలు అంచనా వేయవచ్చు.

Other measurements that may be incorporated into digital multimeters may include:

Continuity sounder: This is one of the most common additions found in a digital multimeter. This capability is sometimes included on a low value Ohms range, or may have its own switch position. The idea is that it is possible to test for continuity and listen for a buzz, rather than having to continually turn away from looking at the unit under test. When using the continuity tester, the same precautions that should be implemented when using the ordinary resistance ranges should be observed, especially the unit should not be powered up..

కంటిన్యూటీ సౌండర్: ఇది ఒక డిజిటల్ మల్టిమీటర్లో కనిపించే అతి సాధారణ సంకలనాల్లో ఒకటి. ఈ సామర్థ్యం కొన్నిసార్లు తక్కువ విలువ ఒమ్ము శరేణిల్ చేర్చబడుతుంది, లేదా దాని సాంత స్వీచ్ షాసనం ఉండవచ్చు. ఆలోచన కొనసాగింపు కోసం పరీక్షించడం మరియు పరీక్షల్ యూనిట్లు చూడకుండా నిరంతరంగా మలుపు తిరగకుండా కాకుండా, ఒక సంచలనం కోసం వినడం సాధ్యమవుతుంది. కొనసాగింపు తెప్పరున్న ఉపయోగించినప్పుడు, సాధారణ నిరోధక శరేణులను ఉపయోగించినప్పుడు అమలు చేయవలసిన జాగ్రత్తలు ముఖ్యంగా యూనిట్ పైకి రాకూడదు.

Frequency: Some digital multimeters can be used to measure frequency. This is one of the less commonly included ranges, but can be used to give a rough indication of frequency up to a few hundred kilohertz. Normally the ranges do not extend very high, and they are not normally very accurate. However they are useful for some low frequency measurements, where accuracy is not paramount.

కొన్ని డిజిటల్ మల్టిమీటర్లు ఫర్కెస్ట్ నేని కోలిచేందుకు ఉపయోగించవచ్చు. ఇది తక్కువగా చేర్చబడిన పరిధులల్లో ఒకటి, కనీ అతను కొన్ని వందల కిలోహర్ట్ వరకు పోనఃపున్యం యొక్క కలినమైన సూచనను అందించడానికి ఉపయోగిస్తారు. సాధారణంగా శరేణులు చాలా ఎక్కువగా విస్తరించవ మరియు అవి సాధారణంగా చాలా ఖచ్చితమైనవి కావు. అయితే కొన్ని తక్కువ పోనఃపున్యం కోలతలకు అవి ఉపయోగకరంగా ఉంటాయి, ఇక్కడ ఖచ్చితత్వం పొరామోంట్ కాదు.

- Capacitance:** With some digital multimeters, it is possible to use them to measure capacitance. Again this facility is not available on all meters, but some have the ability to measure it. Like resistance measurements, capacitance measurements should ideally be undertaken on the component when it is not in circuit. Normally the capacitance ranges are limited, and they are not able to measure small levels of capacitance.
- కొన్ని డిజిటల్ మల్టిమీటర్లల్లో, కెపాసిచెన్స్ కోలిచేందుకు వాటిని వాడవచ్చు. మల్టి ఈ ఈ సాకర్యం అన్ని మీటర్లలో అందుబాటులో లేదు, కనీ కొందరు దీనిని కోలిచే సామర్థ్యాన్ని కలిగి ఉన్నారు. ప్రతిఘంటన కోలతలు వలె, సర్క్యూట్లో లేనప్పుడు

కెపాసిటెన్స్ కొలతలు ఆ భాగంలో ఆదర్శంగా తీసుకోవాలి. సాధారణంగా కెపాసిచెన్స్ పరిధులు పరిమితం కావు, మరియు చిన్న పరిమాణంలో కెపాసిచెన్స్ కొలిచలేవు.

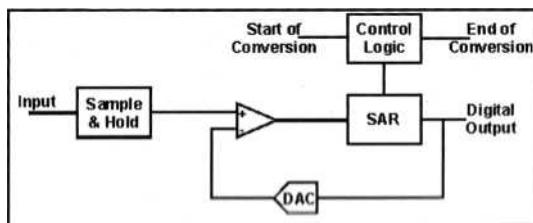
- **Transistor tester:** Occasionally multimeters have the facility to measure transistor parameters. In particular they measure the He or B of the transistor. Typically there are three connections for each of the PNP and NPN varieties, so you need to know what sort it is before testing.
- **టర్సానిప్షర్ చెప్పర్:** అప్పుడప్పుడు మల్టీమీటర్లు టర్సానిప్షర్ కొలిచేందుకు సౌకర్యం కలిగి ఉంటాయి పారామితులు. ముఖ్యంగా వారు అతను లేదా టర్సానిప్షర్ యొక్క బి కొలిచేందుకు. సాధారణంగా PNP మరియు NPN రకాలు యొక్క మూడు కనెక్టన్లు ఉన్నాయి, కాబట్టి మీరు పరీక్షించడానికి ముందు ఇది ఏ విధమైన విధాలుగా తెలుసుకోవాలి.

Digital multimeters are widely used and very useful items of test equipment. They enable measurements of quantities such as current, voltage and resistance to be made very quickly and easily. In addition to this, many DMMs are able to measure other useful parameters, making these items even more useful. While they do not allow more complicated measurements to be made, if many engineers were allowed only one item of test equipment, it would probably be the digital multimeter.

డిజిటల్ మల్టీమీటర్లు విస్తృతంగా ఉపయోగించబడతాయి మరియు పరీక్ష సామగ్రికి చాలా ఉపయోగకరమైన అంశాలు. వారు ప్రస్తుత, వోల్టేజ్ మరియు ప్రతిమటన వంటి పరిమాణాల కొలతలు చాలా త్వరగా మరియు సులభంగా తయారు చేయడానికి వీలు కల్పిస్తాయి. దీనికి అదనంగా, అనేక DMM లు ఇతర ఉపయోగకర పారామితులను కొలుస్తాయి, ఈ అంశాలను మరింత ఉపయోగకరంగా చేస్తుంది. చాలా సంక్లిష్ట కొలతలు తయారు చేయకుండా వారు అనుమతించకపోయినా, అనేక ఇంజనీర్లు పరీక్ష సామగ్రి యొక్క ఒక అంశం మాత్రమే అనుమతించబడితే, అది ఒప్పుకా డిజిటల్ మల్టీమీటర్లా ఉంటుంది.

Basics of how a DMM works

The key process that occurs within a digital multimeter for any measurement that takes place is that of voltage measurement. All other measurements are derived from this basic measurement.


జరుగుతుంది ఏ కొలత కోసం ఒక డిజిటల్ మల్టీమీటర్ లోపల సంభవించే కీ ప్రక్కరియ వోల్టేజ్ కొలత యొక్క. అన్ని ఇతర కొలతలు ఈ వీరాధమిక కొలత నుండి ఉద్దేశించాయి.

Accordingly the key to understanding how a digital multimeter works is in understanding this process.

There are many forms of analogue to digital converter, ADC. However the one that is most widely used in digital multimeters, DMMs is known as the successive approximation register or SAR. Some SAR ADCs may only have resolution levels of 12 bits, but those used in test equipment including DMMs generally have 16 bits or possibly more dependent upon the application. Typically for DMMs resolution levels of 16 bits are generally used, with speeds of 100k samples per second. These levels of speed are more than adequate for most DMM applications, where high levels of speed are not normally required.

దీని ప్రకారం, ఒక డిజిటల్ మల్టిమీటర్ ఎలా పనిచేస్తుందో అర్థం చేసుకోవటానికి ఈ ఈ ప్రక్రియను అర్థం చేసుకుంటుంది.

డిజిటల్ కన్వర్టర్, ADC కు అనలాగ్ ర్యూక్చ అనేక రూపాలు ఉన్నాయి. అయినప్పటికీ డిజిటల్ మల్టిమీటర్లలో విస్తృతంగా ఉపయోగించబడేది, DMM లు వరుస ఉభాయింపు నమోదు లేదా SAR గా పిలువబడతాయి. కొన్ని SAR ADC లు స్పృష్ట ఫోయి 12 బిట్లను కలిగి ఉండవచ్చు, కానీ DMM లతో సహా పరీక్ష పరికరాల్లో ఉపయోగించినవి సాధారణంగా 16 బిట్లు లేదా అనువర్తనంపై మరింత ఎక్కువగా ఆధారపడి ఉంటాయి. సాధారణంగా DMM లు స్పృష్ట ఫోయిలకు 16 బిట్సు సాధారణంగా ఉపయోగించబడతాయి, సెకనుకు 100k నమూనాల వేగంతో. అధిక ఫోయి వేగం అవసరం కానందున చాలా DMM అనువర్తనాలకు ఈ ఫోయి వేగం సరిపోతుంది.

చిత్ర 2.3: Successive Approximation Register ADC మొదటి పనికిరణం

As the name implies, the successive approximation register ADC operates by successively homing in on the value of the incoming voltage.

The first stage of the process is for the sample and hold circuit to sample the voltage at the input of the DMM and then to hold it steady.

With a steady input voltage the register starts at half its full scale value. This would typically require the most significant bit, MSB set to “1” and all the remaining ones set to “0”. Assuming that the input voltage could be anywhere in the range, the midrange means that the ADC is set in the middle of the range and this provides a faster settling time. As it only has to move a maximum of the full scale rather than possibly 100%.

To see how it works take the simple example of an 4-bit SAR. Its output will start at 1000. If the voltage is less than half the maximum capability the comparator output will be low and that will force the register to a level of 0100. If the voltage is above this, the register will move to 0110, and so forth until it homes in on the nearest value.

It can be seen that SAR converters, need one approximating cycle for each output bit, i.e. an n-bit ADC will require n cycles.

పేరు సూచిస్తున్నట్టగా, వచ్చే ఉభాయింపు ADC, రాబోయ్ వోల్టేజ్ యొక్క విలువపై విజయవంతంగా త్యజించడం ద్వారా పనిచేస్తుంది.

ప్రక్రియ యొక్క మొదటి దశ నమూనా కోసం మరియు DMM యొక్క ఇన్పుట్ వద్ద వోల్టేజ్ నమూనాగా ఉంచడానికి సర్యూచ్యట్లు ఉంచండి మరియు ఆపై ఫీరంగా ఉంచడానికి.

ఫీరమైన ఇన్పుట్ వోల్టేజ్లో రిజిస్టర్ సగం దాని పూర్తిఫాయి విలువలో ప్రారంభమవుతుంది. ఇది సాధారణంగా చాలా ముఖ్యమైన బిట్ కావాలి, MSB "1" కు సెట్ చేయబడుతుంది మరియు మిగిలిన అన్ని "0" కు సెట్ చేయబడుతుంది. ఇన్పుట్ వోల్టేజ్ శరేణిలో ఎక్కుడైనా ఉంటుందని డాహిస్తూ, మధ్యకం అంటే ADC శరేణి మధ్యలో సెట్ చేయబడిందని మరియు ఇది వేగవంతమైన ఫీర సమయాన్ని అందిస్తుంది. ఇది 100% కంటే ఎక్కువ గరిష్ట ఫాయిని మాత్రమే కలిగి ఉంటుంది.

t

ఇది 4-బిట్ SAR యొక్క సరళమైన ఉదాహరణను ఎలా పని చేస్తుందో చూడడానికి. దాని అవుట్లుప్పుట్ 1000 వద్ద ప్రారంభమవుతుంది. వోల్టేజ్ సగం గరిష్ట సామర్థ్యం కన్నా తక్కువగా ఉంటే, కంపారైటర్ అవుట్లుప్పుట్ తక్కువగా ఉంటుంది మరియు ఇది రిజిస్టర్ ను 0100 ఫాయికి బలవంతం చేస్తుంది. వోల్టేజ్ పైన ఉంటే, రిజిస్టర్ 0110 కు తరలించబడుతుంది మరియు అది సమీప విలువలో ఇంత వరకు గృహోలు వరకు. SAR కన్వెర్టర్లకు, ప్రతి అవుట్లుప్పుట్ బిట్లుకు ఒక ఉభాయింపు చుక్కం అవసరమవుతుంది, అంటే ఒక n- బిట్ ADC n చక్కరాల అవసరం అవుతుంది.

DMM operation

Although the analogue to digital converter forms the key element within the instrument, in order to fully understand how a digital multimeter works, it is necessary to look at some of the other functions around the ADC.

Although the ADC will take very many samples the overall digital multimeter will not display or return every sample taken. Instead the samples are buffered and averaged to achieve high accuracy and resolution. This will overcome the effects of small variations

such as noise, etc., noise created by the analogue first stages of the DMM being an important factor that needs to be overcome to achieve the highest accuracy.

డిజిటల్ కన్వర్టర్ అనలగ్ పరికరానికి కీలక మూలకం ఏర్పడినప్పటికీ, ఒక డిజిటల్ మల్టిమీటర్ ఎలా పనిచేస్తుందీ పూర్తిగా అర్థం చేసుకోవడానికి, ADC చుట్టూ ఉన్న ఇతర ఘంష్టనలో కొన్ని చూడండి అవసరం.

ADC చాలా నమూనాలను తీసుకుంటుంది, మొత్తం డిజిటల్ మల్టిమీటర్ ప్రదర్శించబడు లేదా ప్రతి నమూనాను తిరిగి తీసుకోదు. బదులుగా నమూనాలను బహర్ చేస్తారు మరియు అధిక ఖచ్చితత్వం మరియు స్పష్టత సాధించడానికి సగటు. ఇది శబ్దం వంటి చిన్న వైవిధ్యాల ప్రభావాలను అధిగమిస్తుంది, DMM యొక్క అనలగ్ మొదటి దశల్లో స్పష్టించిన శబ్దం, అత్యధిక ఖచ్చితత్వం సాధించడానికి అధిగమించడానికి అవసరమైన ముఖ్యమైన కారకంగా ఉంటుంది.

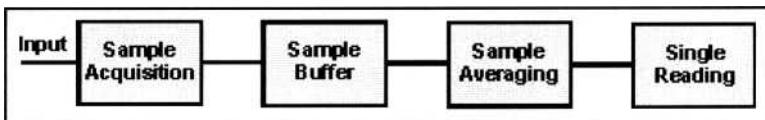


Figure 2.4: Operation flow diagram for operation of a DMM Measurement time

(bie of the key areas of understanding how a digital multimeter works is related to the measurement time. Apart from the basic measurement there are a number of other functions that are required and these all take time. Accordingly the measurement time of a digital multimeter, DMM, may not always appear straightforward.

The overall measurement time for a DMM is made up from several phases where different activities on tin

(డిజిటల్ మల్టిమీటర్ ఎలా పనిచేస్తుందీ అర్థం చేసుకోవడంలో కీలకమైన వీరాంతాలు కొలత సమయంతో సంబంధం కలిగి ఉంటాయి, వీరాధమిక కొలత కాకుండా అనేక ఇతర విధులు అవసరమవతాయి మరియు ఇవి అన్ని సమయాలను తీసుకుంటాయి. అనేక డిజిటల్ మల్టిమీటర్ యొక్క కొలత సమయం, DMM, ఎల్లప్పుడూ సూటిగా కనిపించకపోవచు.).

DMM కొరకు మొత్తం కొలత సమయం అనేక దశల నుండి తయారు చేయబడుతుంది, ఇక్కడ టీస్టే వివిధ కార్యకలాపాలు ఉంటాయి

- **Switch time:** The switch time is the time required for the instrument to settle after the input has been switched. This includes the time to settle after a measurement type has

been changed, e.g. from voltage to resistance, etc. It also includes time to settle after the range has been changed. If auto-ranging is included the meter will need to settle if a range change is required.

- **స్టోచ్ స్టేట్:** ఇన్పుట్ స్టోచ్ చేసిన తర్వాత ఫిరపడటానికి పరికరం కోసం సమయం అవసరం. ఈ కొలత రకం మార్పుబడిన తర్వాత ఫిరపడటానికి సమయం ఉంటుంది, ఉదా. ఎల్టేజ్ నుంచి ప్రతిఫుటన వరకు మొదలైనవి. పరిధిని మార్చిన తరువాత ఇది ఫిరపడటానికి సమయాన్ని కలిగి ఉంటుంది. ఆటో-రేంజింగ్ చేర్చబడితే, రేంజ్ మార్పు అవసరమైతే మీటర్ ఫిరపడవలని ఉంటుంది.

- **Settling time:** Once the value to be measured has been applied to the input, a certain time will be required for it to settle. This will overcome any input capacitance levels when high impedance tests are made, or generally for the circuit and instrument to settle.
- **ఫిరపడిన సమయం:** కొలుస్తారు విలువ ఒకసారి ఇన్పుట్కు వర్తింపజేయబడితే, దానిని పరిష్కరించడానికి కొంత సమయం అవసరం అవుతుంది. అధిక అవరోద పరీక్షలు జరిగేటప్పుడు, లేదా సాధారణంగా సర్క్యూట్ మరియు వాయిద్యం కోసం ఫిరపడినప్పుడు ఏదైనా ఇన్పుట్ కెపాసిటెన్స్ ప్రాయిలు అధిగమించబడతాయి.

- **Signal measurement time:** This is the basic time required to make the measurement itself. For AC measurements, the frequency of operation must be taken into account because the minimum signal measurement time is based on the minimum frequency required of the measurement. For example, for a minimum frequency of 50 Hz, an aperture of four time the period is required,
 - e. 80 ms for a 50Hz signal, or 67ms for a 60Hz signal, etc.

సిగ్నల్ కొలత సమయం: కొలత స్వయంగా చేయడానికి అవసరమైన వీరాధమిక సమయం ఇది. AC కొలతలు కోసం, ఆపరేషన్ పోనుపోవుటకు పరిగణనలోకి తీసుకోవాలి ఎందుకంచే కనీస సిగ్నల్ కొలత కొలతకు కనీస పోనుపోవుటకు ఆధారంగా ఉంటుంది. ఉదాహరణకు, కనీస పోనుపోవుటకు 50 Hz కోసం, కాలానికి నాలుగు సార్లు ఎపర్చరు,

- **Auto-zero time:** When autorange is selected, or range changes are made, it is necessary to zero the meter to ensure accuracy. Once the correct range is selected, the auto-zero is performance for that range.
- **అటో-సున్మా సమయము:** అటోరేంజ్ ఎన్నుకోబడినప్పుడు, లేదా శరేటి మార్పులు చేయబడినప్పుడు, ఖచ్చితత్వాన్ని నిర్ధారించడానికి మీటర్లు సున్మాకు అవసరం. సరైన శరేటిని ఎంచుకున్న తర్వాత, అటో-సున్మా ఆ శరేటికి పనితీరు.

- **ADC calibration time:** In some DMMs a calibration is periodically performed. This must be accounted for, especially where measurements are taken under automatic or computer control.
- ADC అమరిక సమయం: కొన్ని DMM లలో క్రమాంకనం క్రమానుగతంగా నిర్వహిస్తారు. ఆటోమేటిక్ లేదా కంప్యూటర్ నియంత్రణలో కొలతలు తీసుకున్న చేట, ఇది గణన చేయాలి.

It is always useful to know how a digital multimeter works in order to be able **to** make the best use of it and the most accurate measurements. However it should be remembered that different multimeters from different manufacturers may work in different ways. It is therefore always helpful to consult the manufacturers instructions to understand how a particular digital multimeter works.

ఒక డిజిటల్ మల్టిమీటర్ దాని యొక్క ఉత్తమ ఉపయోగం మరియు అత్యంత ఖచ్చితమైన కొలతలు చేయడానికి ఎలా పనిచేస్తుందో తెలుసుకోవడం ఎల్లప్పుడూ ఉపయోగపడుతుంది. అయితే వేర్యేరు తయారీదారుల నుండి వేర్యేరు మల్టిమీటర్లు వేర్యేరు మాధాల్లో పని చేస్తాయని గుర్తుంచుకోవాలి. నిర్దిష్ట డిజిటల్ మల్టిమీటర్ ఎలా పనిచేస్తుందో అర్థం చేసుకోవడానికి తయారీదారు సూచనలను సంప్రదించడానికి ఇది ఎల్లప్పుడూ ఉపయోగపడుతుంది.

Precaution to be taken in handling digital Multi-meter,, Frequently occurring problems in Digital multimeters and the remedial measures

When using a digital multimeter, there are a number of initial steps and precautions that should be observed. These guidelines are always best to follow, and if incorporated into a workflow they will help to make measurements more accurate and prevent damage to the instrument or reduce safety risks for the user.

డిజిటల్ మల్టీ-మీటర్లు నిర్వహించడంలో జాగ్రత్త వహించాలి. డిజిటల్ మల్టీమీటర్లు మరియు నివారణ చర్యల్లో తరచుగా సంభవించే సమస్యలు ఒక డిజిటల్ మల్టిమీటర్ ఉపయోగించినప్పుడు, గమనించవలసిన అనేక ప్రారంభ దశలు మరియు జాగ్రత్తలు ఉన్నాయి. ఈ మార్గదర్శకాలు ఎల్లవేళలా అనుసరించడానికి ఉత్తమమైనవి, మరియు ఒక వర్షాంగు విలీనం చేస్తే అవి కొలతలను మరింత ఖచ్చితమైనవిగా చేయటానికి మరియు పరికరానికి నష్టం జరపడానికి లేదా వినియోగదారునికి భద్రత ప్రమాదాలను తగ్గించటానికి సహాయపడుతుంది.

- **Check battery regularly:** DMMs require a power for their operation. For portable instruments, this is provided by a battery. Regular checks of the battery state are very advisable to ensure that there is sufficient voltage to adequately power the DMM. Also if batteries are left in situ for long periods they can leak and damage the tin- contacts in

the instrument as the contents of the battery are corrosive. To achieve this a sticker such as one indicating the data the battery is due for replacement or a calibration due sticker could be used.

- క్రమం తప్పకుండా బ్యాటరీని తనిఖీ చేయండి: డిఎమ్ఎంలకు వారి ఆపరేషన్ కోసం శక్తి అవసరమవుతుంది. పోర్టబిల్ కోసం

సాధన, ఇది బ్యాటరీ చేత అందించబడుతుంది. బ్యాటరీ యొక్క రెగ్యులర్ చెక్కులు సరిగా శక్తిని I-DMM కు తగినంత వోల్టేజ్ ఉందని నిర్ధారించడానికి చాలా మంచిది. బ్యాటరీలు దీర్ఘకాలం పాటు బ్యాటరీలు విడిచిపెట్టినట్టుయితే, బ్యాటరీ యొక్క వస్తువులను తినివేయుట వలన వారు వాయిద్యంలో లీన్-కాంటాక్టును విసిరివేయవచ్చు. ఈ షికర్య సాధించడానికి ఒక బ్యాటరీ కత్తిరించడం వలన బ్యాటరీని మార్పుడం వలన డేటాను సూచించే ఒక షికర్ సాధించడానికి.

- ***Return meter to high voltage setting after use:*** To prevent the possibility of accidental damage by the meter being set to a current or low voltage range, it is always wise to leave the meter set to read a high voltage, even if there is an Off button. It is too easy to automatically connect a digital multimeter to the circuit without thinking about the range. This can lead to damage of both the equipment under test and the meter if it is set to a current range when voltage is to be measured, for example. Although some meters are auto-ranging for voltage, current etc, others are not, and therefore it is always wise to leave the meter set to the highest voltage range possible.
 - ఉపయోగం తర్వాత అధిక వోల్టేజ్ అమర్పుకు మీటర్ రిటర్న్: ప్రస్తుత లేదా తక్కువ వోల్టేజ్ శరేణికి సెట్ చేయబడిన మీటర్ ద్వారా ప్రమాదవశాత్తూ నష్టం జరగుండానివారించడానికి, అధిక వోల్టేజ్ చదివటానికి సెట్ చేసిన మీటర్ ర్స్ వదిలేయడం ఎల్లప్పుడూ తెలివైనది, ఆఫ్ బటన్. పరిధి గురించి ఆలోచించకుండా స్వయంచాలకంగా డిజిటల్ మల్టీమీటర్ సర్క్యూట్యూన్ కనెక్ట్ చేయడం చాలా సులభం. వోల్టేజ్ కోలుస్తారు, ఉడాహారణకు, ఇది ప్రస్తుత శరేణికి సెట్ చేయబడితే పరీక్ష మరియు మీటర్ రెండింటిలోనూ పరికరాలను నష్టానికి దారి తీస్తుంది. కొన్ని మీటర్ల వోల్టేజ్, ప్రస్తుత తదితరాలకు ఆటో-రేంజ్ అయినప్పటికీ, ఇతరులు కావు, అందువల్ల అది సాధ్యమయ్యే అత్యధిక వోల్టేజ్ పరిధికి సెట్ చేసిన మీటర్ ర్స్ వదిలివేయడం ఎల్లప్పుడూ తెలివైనది.

- ***Ensure probes are in good condition:*** Poor probes may not only result in poor readings, because it is not possible to connect to any test points properly, but also there can be the risk of injury if they are cracked and broken leaving exposed conductive areas when making a high voltage measurement.

- వేరోబ్స్ మంచి స్పితిల్ ఉన్నాయని నిర్భారించుకోండి: ఏవైనా పరీక్ష షానాలకు సరిగ్గా కనెక్ట్ కావడం సాధ్యంకాదు ఎందుకంచే పేద వేరోబ్స్, పేద రీడింగులకు మాత్రమే కారణమవడమే కాక, అని బహిర్భతమయ్యే వాహక వీరాంతాలను వదిలివేయబడి, పగులగొట్టబడి, అధిక వోల్టేజ్ కొలత చేస్తున్నప్పుడు.

Practical Exercise-Cleaning the switch contacts using Switch Cleaning Solution

What is a Switch Cleaning Solution- A solvent *I* lubricant blend designed to remove surface contamination and oxidation from all metallic contact surfaces. Reduces electrical resistance across the switch or connector by cleaning the surface. WD-40 is most popular Switch Cleaning Solution.

ఒక స్విచ్ క్లీనింగ్ సాల్యూపన్ అంచే ఎమిటి - అన్ని లోహ సంపర్క ఉపరితలాల నుండి ఉపరితల కాలుష్యం మరియు ఆక్షీకరణను తోలగించడానికి రూపొందించిన ఒక దీర్ఘమణి *I* కందెన మిశ్రమం. ఉపరితలం శుభ్రపరచడం ద్వారా స్విచ్ లేదా కనెక్టర్ అంతటా విధ్యత్త నిరోధకతను తగ్గిస్తుంది. WD-40 అత్యంత ప్రజాదరణ స్విచ్ క్లీనింగ్ సాల్యూపన్.

Key Properties: Cleans and lubricates switches, connectors and slip rings. Removes dirt and protects from further contamination. Reduces contact resistance. Commonly known as switch cleaner. It is like a spray. Just spray over the rusty areas or greasy areas and leave it for 5 minutes. After that use the surface for any kind of Voltage measurement or soldering as required.

కీ లక్ష్యాలు: స్విచ్లు, కనెక్టర్లు మరియు స్లిప్ రింగులు శుభ్రపరుస్తుంది మరియు మెరుగుపరుస్తాయి. మురికిని తోలగిస్తుంది మరియు మరింత కాలుష్యం నుండి రక్షిస్తుంది. పరిచయం నిరోధకతను తగ్గిస్తుంది. సాధారణంగా స్విచ్ క్లీనర్ అని పిలుస్తారు. ఇది ఒక స్నేహ లాగా ఉంటుంది. జష్ట రష్ట వీరాంతాల్ లో లేదా జిడ్జెన్ వీరాంతాల్ సీరావం మరియు 5 నిమిషాలు వదిలి. అవసరమైన తరువాత ఎ రకమైన వాల్ట్ కొలత లేదా టంకం కోసం ఉపరితలం ఉపయోగించాలి.

Practical Exercise: How to test a Fuse with a multimeter

Fuses are really just wires that are designed not to last, but their purpose is to prevent damage to more valuable electrical equipment or prevent fires (especially in homes) caused by power surges. If too much power runs through the fuse will “burn out,” quite literally, and break the circuit. There are number of varieties of fuse, but their differences are primarily in appearance.

పూర్వజ్ఞ నిజంగా కేవలం వైర్లు కాదు, కానీ వాటి ప్రయోజనం అధిక విలువైన

విద్యుత్ పరికరాలకు నష్టం జరపడం లేదా విద్యుత్ కల్గొలాల ద్వారా మంటలు (ముఖ్యంగా ఇళ్లలో) నిరోధించడం. చాలా అధికారం పూజ్ ద్వారా నడుస్తుంది ఉంచే "బర్న్," చాలా వాచ్యంగా, మరియు సరూళ్లు విచిన్నాం. పూజ్ రకాలు ఉన్నాయి, కానీ వారి తేడాలు ప్రధానంగా కనిపిస్తాయి.

Take the FUSE out of the Circuit.

In the Analog or Digital Multimeter keep the Mode in Resistance Mode.

Keep the scale in the Lowest range.

Touch ; the probe of the meter on both ends of the Fuse,

The meter should read Close to ZERO if the FUSE is OK .

The meter will read OPEN or OVERRANGE if the FUSE is bad.

Alternate Method with Continuity Testing

1. Keep the Meter in Continuity Testing Mode.
2. Touch the probe of the meter on both sides of the FUSE.
3. Sounding buzzer would indicate FUSE is good otherwise FUSE is bad.

Practical Exercise-Replace the FUSE with a matching rating

1. Check the Voltage rating of the Fuse.
2. Check the current rating of the Fuse.
3. Check the type of the Fuse- Whether it is Fast Blow or Slow Blow
4. Replace the Fuse with matching Voltage and Current Rating as well as with matching type.

సరూళ్లు నుండి FUSE ను తీసుకోండి.

- అనలగ్ లేదా డిజిటల్ మల్టిమీటర్లో రీసిష్ట్యూన్ మోడ్ మోడు ఉంచండి.
- అత్యల్ప పరిధిలో ప్లాయిని ఉంచండి.
- టుచ్; పూజ్ యొక్క రెండు చివరలను మీటర్ యొక్క పీరీజ్,
- FUSE సరే ఉంచే మీటర్ మూనిసెవ్యాలి ZERO కి దగ్గరగా ఉండాలి.
- FUSE చెడుగా ఉంచే మీటర్ OPEN లేదా OVERRANGE ను పంపుతుంది.

కొనొగింపు పరీక్షతో ప్రత్యామ్నాయ విధానం

- కంటిన్యూటీ చెప్పింగ్ మోడ్ మీటర్ ఉంచండి.
- FUSE యొక్క రెండు వైపులా మీటర్ యొక్క దర్యాపును తాకండి.
- బ్యాజర్సు సౌండింగ్ FUSE మంచిదని సూచిస్తుంది లేకపోతే FUSE చెడుది.

పొరాఫైకల్ వ్యాయామం - FUSE ను ఒక సరితూపు రేటింగ్ భర్తీ చేయండి

- పూజ్ యొక్క వోల్టేజ్ రేటింగును తనిఖీ చేయండి.
- పూజ్ యొక్క ప్రస్తుత రేటింగును తనిఖీ చేయండి.
- జ్ యొక్క రకాన్ని తనిఖీ చేయండి - ఇది ఫోష్ భో లేదా ఫో భో అయినా

- సరిపోలే వోల్టేజ్ మరియు ప్రస్తుత రేటింగ్ అలాగే సరిపోలే రకం తో ఫ్యూజ్ వునుస్తాపించుము.

A photograph of a slow-blow fuse. It is a cylindrical component with a glass tube and a metal cap at each end. A thin, coiled wire is visible inside the tube, representing the fuse element.	Slow Blow Type Fuse will have spring type wiring inside and acts slowly.
A photograph of a fast-blow fuse. It is a cylindrical component with a metal cap at each end. The body is made of a single, solid wire that is much thicker than the wire in a slow-blow fuse.	Fast Blow Fuse will have a single wire and it is acts very fast

Basic Electronics Components

3. వీరాధమిక ఎలక్ట్రానిక్స్ భాగాలు

Electronic components are of two types:

1. **Active Components:** Those devices or components which required external source to their operation is called Active Components.

For Example: Diode, Transistors, SCR etc...

Explanation and Example: As we know that Diode is an Active Components. So it is required an External Source to its operation. Because, If we connect a Diode in a Circuit and then connect this circuit to the Supply voltage., then Diode will not conduct the current Until the supply voltage reach to 0.3(In case of Germanium) or 0.7V(In case of Silicon).

ఎలక్ట్రానిక్ భాగాలు రెండు రకాలు:

1. కీరియాసీల భాగాలు: వాటి ఆపరేషన్సు బాహ్య మూలాన్ని అవసరమైన ఆపరికరాలు లేదా భాగాలు యాక్టివ్ భాగాలు అని పిలుస్తారు.

డిండింగ్ కంపనీలు: డయోడ్, టీరానిప్పర్సు, ఎస్.సి.ఆర్ మొదలైనవి ...

వివరణ మరియు డిండింగ్: డయోడ్ ఒక కీరియాసీల భాగాలుగా మనకు తెలిసినట్లుగా. కాబట్టి దాని కార్బ్యకలాపాలకు బాహ్య మూల అవసరం. ఎందుకంటే, మేము ఒక సర్క్యూట్ ఒక డయోడును అనుసంధానించి, ఈ సర్క్యూట్టును సరఫరా వోల్టేజ్‌చి అనుసంధానించినట్లయితే, డయోడ్ ప్రస్తుత ప్రవాహాన్ని నిర్ణయించదు. సరఫరా వోల్టేజ్ 0.3 (జెర్మనియం విషయంలో) లేదా 0.7V (సిలికాన్ విషయంలో)

2. **Passive Components:** Those devices or components which do not required external source to their operation is called Passive Components.

For Example: Resistor, Capacitor, Inductor etc

Explanation and Example: Passive Components do not require external source to their operation. Like a Diode, Resistor does not require 0.3 Or 0.7 V. I.e., when we connect a resistor to the supply voltage, it starts work automatically without using a specific voltage. If you understood the above statement about active Components, then you will easily get this example.

RESISTOR

Definition, types of resistors, their construction & specific use, colorcoding, power rating.

Definition of Resistors: These are passive electronic components which resists the flow of current is a circuit thereby regulating the flow of current in the circuit.

నిమ్మియత్క భాగాలు: తమ కార్బూకలాపాలకు బాహ్య మూల అవసరం లేని పరికరాలను లేదా భాగాలను నిమ్మియ భాగాలుగా విలుస్తారు. ఉదాహరణకు: నిరోధకం, కెపాసిటర్, ఇండక్షర్ మొదలైనవి వివరణ మరియు ఉదాహరణ: నిమ్మియత్క భాగాలు వారి కార్బూకలాపాలకు బాహ్య మూల అవసరం లేదు. ఒక ఉయోడ్ వలె, నిరోధకంకు 0.3 లేదా 0.7 V అవసరం ఉండదు, మేము సరఫరా మౌట్టో ఒక మండేను కనెక్ట్ చేస్తున్నప్పుడు, ఇది ఒక నిర్దిష్ట ఒల్టేజిని ఉపయోగించకుండా స్వయంచాలకంగా పని చేస్తుంది. కీరియాశీల భాగాలు గురించి పై ప్రకటన గురించి మీరు అర్థం చేసుకుంచే, మీరు ఈ ఉదాహరణని నులభంగా పొందుతారు. నిరోధకం నిర్వచనం, రెసిష్టర్ రకాలు, వాటి నిర్మాణం & నిర్దిష్ట ఉపయోగం, రంగు, పవర్ రేటింగ్. రెసిష్టార్ నిర్వచనం: ఇవి ప్రస్తుత ప్రవాహాన్ని వ్యతిరేకించే నిమ్మియత్క ఎలక్ట్రానిక్ భాగాలు, సరూచ్యాట్లో ప్రస్తుత ప్రవాహాన్ని క్రమబద్ధికరించడానికి ఒక సరూచ్యాట్.

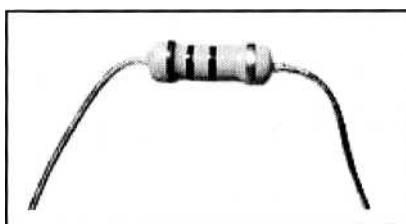


Figure 3.1: A typical resistor

Standard Resistor Symbols- The following are the standard Resistor Symbols $R1=$

100Ω

$R1=100\Omega$

----- W\z -----
Zig- Zag type line symbol

or

---- 4 I ---
Rectangular Box Symbol for Resistor

Resistors can be Of Fixed Value or can have Variable Values called Potentiometer. Fixed

Resistors can be classified into four broad groups;

- **Carbon Composition Resistor:** Made of carbon dust or graphite paste, low wattage values
- **Film Type Resistor:** Made from conductive metal oxide paste, very low wattage values
- **Wire-wound Resistor:** Metallic bodies for heat sink mounting, very high wattage ratings
- **Semiconductor Resistor:** High frequency/precision surface mount thin film technology.

రెసిష్టర్ స్థిర విలువను కలిగి ఉండవచ్చు లేదా వేరియబుల్ విలువలు Potentiometer అని పిలువబడతాయి. స్థిర ప్రతిఫుటుకులు నాలుగు విస్తృత సమూహాలుగా వర్గీకరించవచ్చు;

- కార్బన్ కంపోజిషన్ నిరోధకం: కార్బన్ దుమ్ము లేదా గీరాషైట్ పేష్ట్ మేడ్, తక్కువ వాచేజ్ విలువలు
- ఫిల్మ షైప్ రెసిష్టర్: వాహక మెటల్ ఆక్రోడ్ పేష్ట్ మేడ్, చాలా తక్కువ వాచేజ్ విలువలు
- వైర్-గాయం నిరోధకం: హీట్ సింక్ మౌంటు కోసం మెటాలిక్ మోట్రైన్, చాలా అధిక వాచేజ్ రేటింగ్స్
- సెమీకండక్షర్ నిరోధకం: అధిక పోనుస్తున్యం / ఖచ్చితత్వ ఉపరితల మౌంట్ థిన్ ఫిల్మ షైక్యులజీ.

Practical Exercise: How to identify different types of resistors

COMPOSITION TYPES OF RESISTOR

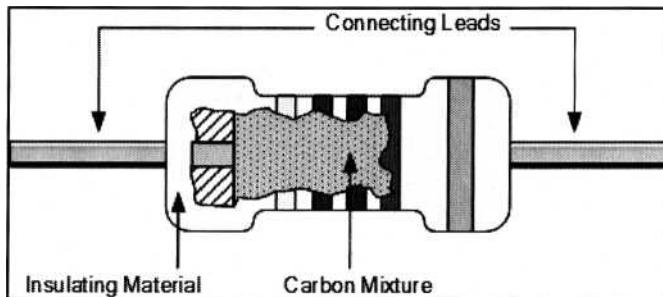
Carbon Resistors are the most common type of Composition Resistors. Carbon resistors are a cheap general purpose resistor used in electrical and electronic circuits. Their resistive element is manufactured from a mixture of finely ground carbon dust or graphite (similar to pencil lead) and a nonconducting ceramic (clay) powder to bind it all together.

The ratio of carbon dust to ceramic (conductor to insulator) determines the overall resistive value of the mixture and the higher the ratio of carbon, the lower the overall resistance. The mixture is moulded into a cylindrical shape with metal wires or leads are attached to each end to provide the electrical connection as shown, before being coated with an outer insulating material and colour coded markings to denote its resistive value.

రెసిష్టర్ యొక్క మిశ్రమ రకాలు

కార్బన్ రెసిష్టర్లు అత్యంత సాధారణ రకాలైన కూర్చు రెసిష్టర్లు. కార్బన్ నిరోధకాలు విద్యుత్ మరియు ఎలక్ట్రానిక్ సర్వ్యూట్లలో ఉపయోగించే చోక సాధారణ సాధారణ ప్రయోజన నిరోధకం. వాటి రెసిప్రివ్ మూలకం మిశ్రమంతో తయారవుతుంది, ఇది కార్బన్ దుమ్ము లేదా గీరాపైట్ (పెనిల్ సీడ్ మాదిరిగా) మిశ్రమం నుండి తయారు చేయబడుతుంది మరియు అన్నింటిని కలుపుకోడానికి ఒక నిర్వంధ సిరామిక్ (క్లే) పోడర్.

సిరామిక్ (ఇన్సులేటర్లు కండక్టర్) యొక్క కార్బన్ ధూళి యొక్క నిష్పత్తి మిశ్రమం యొక్క మొత్తం నిరోధక విలువను నిర్ణయిస్తుంది మరియు కార్బన్ యొక్క నిష్పత్తి ఎక్కువగా ఉంటుంది, మొత్తం నిరోధకత తక్కువగా ఉంటుంది. ఈ మిశ్రమం ఒక వెండి గొట్టంలాగా మారుతుంది, దాని వెలుపలి నిరోధక పదార్థం మరియు రంగు కోడెడ్ గుర్తులు దాని రెసిప్రివ్ విలువను సూచించడానికి ముందుగా విద్యుత్ కనెక్టనును అందించడానికి ప్రతి తీరంతో మెటల్ వైర్లు లేదా లీడ్స్ జతచేయబడతాయి.


Resistors can be Of Fixed Value or can have Variable Values called Potentiometer. Fixed Resistors can be classified into four broad groups;

- **Carbon Composition Resistor:** Made of carbon dust or graphite paste, low wattage values
- **Film Type Resistor:** Made from conductive metal oxide paste, very low wattage values
- **Wire-wound Resistor:** Metallic bodies for heat sink mounting, very high wattage ratings
- **Semiconductor Resistor:** High frequency/precision surface mount thin film technology.

Carbon Resistor

Carbon Resistor

The **Carbon Composite Resistor** is a low to medium type power resistor which has a low inductance making them ideal for high frequency applications but they can also suffer from noise and stability when hot. Carbon composite resistors are generally prefixed with a “CR” notation (eg, CR10kf1) and are available in E6 ($\pm 20\%$ tolerance (accuracy)), E12 (+ 10% tolerance) and E24 ($\pm 5\%$ tolerance) packages with power ratings from 0.125 or 1/4 of a Watt up to 5 Watts.

Carbon composite resistor types are very cheap to make and are therefore commonly used in electrical circuits. However, due to their manufacturing process carbon type resistors have very large tolerances so for more precision and high value resistances, **film type resistors** are used instead.

కార్బన్ కాంపోజిట్ రెసిస్టర్ అనేది తక్కువ ఫీరీక్వెన్సీ అనువర్తనాలకు ఉత్తమమైన తక్కువ ఇండక్షన్స్ కలిగి ఉన్న మాధ్యమం రకం శక్తి నిరోధకతకు తక్కువగా ఉంటుంది, కానీ వారు శభం మరియు స్థిరత్వంతో వేడిగా ఉన్నప్పుడు కూడా బాధపడతారు. కార్బన్ మిశ్రమ నిరోధకాలు సాధారణంగా "CR" సంకేతాలతో (ఉదా., CR10kf1) ముందుగా ఉంటాయి మరియు E6 ($\pm 20\%$ సహనం (ఖచ్చితత్వం), E12 (+ 10% సహనం) మరియు E24 ($\pm 5\%$ సహనం) ప్యాకేజీలు 0.125 లేదా 1/4 వాట్ నుండి 5 వాట్ వరకు రేటింగ్స్).

కార్బన్ మిశ్రమ నిరోధకం రకాలు చాలా తక్కువగా ఉంటాయి మరియు అందుకే సాధారణంగా ఎలక్ట్రికల్ సర్క్యూట్లలో ఉపయోగిస్తారు. అయినప్పటికీ, వారి ఉత్పాదక ప్రక్రియ కారణంగా కార్బన్ రకం రెసిస్టర్లు చాలా సున్నితమైన మరియు అధిక విలువ నిరోధకతలకు చాలా పెద్ద సహనం కలిగి ఉంటాయి, బదులుగా చిత్రం రకం నిరోధకాలు ఉపయోగించబడతాయి.

Film Type Resistors

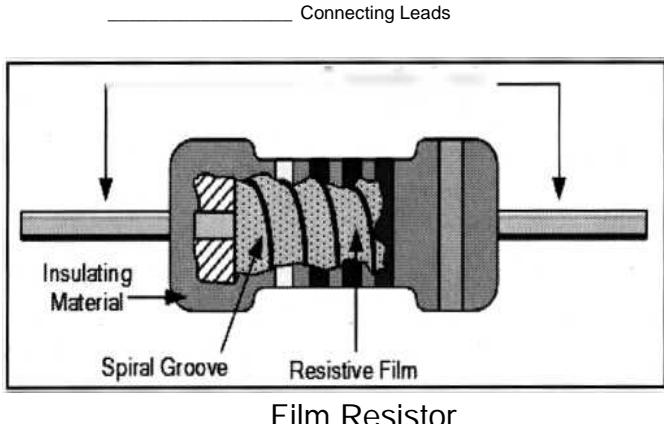
The generic term “Film Resistor” consist of *Metal Film*, *Carbon Film* and *Metal Oxide*

Film resistor types, which are generally made by depositing pure metals, such as nickel, or an oxide film, such as I III-oxide, onto an insulating ceramic rod or substrate.

సాధారణ పదం "ఫిల్ట్ రెసిస్టర్" లో మెటల్ ఫిల్ట్, కార్బన్ పల్ట్ మరియు మెటల్ ఆక్సిడ్ ఫిల్ట్ రెసిస్టర్ రకాలు ఉంటాయి, ఇవి సాధారణంగా నికెల్, లేదా పి జల్-ఒక్సిడ్ వంటి ఆక్సిడ్ చలనచిత్రం వంటి స్వచ్ఛమైన లోహాలను నిక్షేపించడం ద్వారా తయారు చేయబడతాయి. సిరామిక్ రాడ్ లేదా ఉపరితల నిరోధక.

' The resistive value of the resistor is controlled by increasing the desired thickness of the deposited film giving them the names of either "thick-film resistors" or "thin-film resistors".

నేను నిరోధక విలువ యొక్క నిరోధక విలువను డిపాజిట్ చిత్రం యొక్క మందారని పెంచడం ద్వారా వాటిని నియంత్రిస్తుంది, వాటిని "మందపాటి-చిత్రం రెసిస్టర్" లేదా "సన్నని-చిత్రం రెసిస్టర్"గా పిలుస్తారు.


(Once deposited, a laser is used to cut a high precision spiral helix groove type pattern into this film. The cutting of the film has the effect of increasing the conductive or resistive path, a bit like taking a long length of straight wire and forming it into a coil.

This method of manufacture allows for much closer tolerance resistors (1% or less) compared to the simpler carbon composition types. The tolerance of a resistor is the difference between the preferred value (i.e, 100 ohms) and its actual manufactured value i.e, 103.6 ohms, and is expressed as a percentage, for example 5%, 10% etc, and in our example the actual tolerance is 3.6%. Film type resistors also achieve a significantly higher maximum ohmic value compared to other types and values in excess of 10M12 (10 Million ohm's) are available.

(ఇన్ను ఇన్నెష్ట్, ఈ లేజర్ లో ఒక సున్నితమైన సున్నితమైన హెలిక్స్ గా వైపు నమూనాను తగ్గించటానికి లేజర్ రూ వాడతారు. ఈ చిత్రం యొక్క కత్తిరింపు అనేది వాహక పెరగడాన్ని ప్రభావపంతంగా కలిగి ఉంటుంది లేదా ఎమ్ముష్ట్ మార్గం, అది కాబిల్ గా రూపొందిస్తుంది. తయారీ యొక్క ఈ పద్ధతి చాలా సన్నిహిత సహన నిరోధకాలను (1% లేదా అంతకంచే తక్కువ) అనుమతిస్తుంది, ఇది సరళమైన కార్బన్ కూర్చు రకాలను నేను విస్కరించాను. పేరాసెసింగ్ విలువ (అనగా, 100 ohms) మరియు దాని వాస్తవమైన ఉత్పత్తి లైన్ అనగా, 103.6 ohms మధ్య తీల్కించుట, మరియు మన ఉదహారణలో 5%, 10% అనులు సహనం 3.6%. అదనపు రకం 10M12

(10 మిలియన్ 12 మొక్క) ఆర్గ్ అందుబాటులో ఇతర రకాల మరియు విలువలతో పోలింగపుడు చిత్ర రకం నిరోధకాలు కూడా అధిక గరిష్ట ఒహమిక్ విలువను పెంచుతాయి.

Film Resistor

Film Resistor

Metal Film Resistors have much better temperature stability than their carbon equivalents, lower noise and are generally better for high frequency or radio frequency applications. **Metal Oxide Resistors** have better high surge current capability with a much higher temperature rating than the equivalent metal film resistors.

Another type of film resistor commonly known as a Thick Film Resistor is manufactured by depositing a much thicker conductive paste of CERamic and METal, called Cermet, onto an alumina ceramic substrate. Cermet resistors have similar properties to metal film resistors and are generally used for making small surface mount chip type resistors, multi-resistor networks in one package for PCB's and high frequency resistors. They have good temperature stability, low noise, and good voltage ratings but low surge current properties.

Metal Film Resistors are prefixed with a "MFR" notation (eg, MFRIOOkC) and a CF for Carbon Film types. Metal film resistors are available in E24 ($\pm 5\%$ & $\pm 2\%$ tolerances), E96 ($\pm 1\%$ tolerance) and E192 ($\pm 0.5\%$, $\pm 0.25\%$ & $\pm 0.1\%$ tolerances) packages with power ratings of 0.05 (1/20th) of a Watt up to 1/2 Watt. Generally speaking Film resistors are precision low power components.

మెటల్ ఫిలిం రెసిప్పర్లు వాటి కార్బన్ సమ్మేళనాలు, తక్కువ శబ్దం కంటే మెరుగైన ఉష్ణోగ్రత స్థిరత్వం కలిగి ఉంటాయి మరియు అధిక ఫర్కెన్సీ లేదా రేడియో పొనఃపున్య అనువర్తనాలకు సాధారణంగా మంచివి. మెటల్ ఆక్సిడ్

రెసిప్పర్లు సమానమైన లోపాపు ఫిలిం రెసిప్పర్లు కన్నా ఎక్కువ ఉష్టోగ్రత ఉష్టోగ్రతతో మెరుగైన అధిక సామర్థ్యం కలిగి ఉంటాయి. మరొకటి రాలిని ఫిల్మ్ రెసిప్పార్ అని పిలవబడే మరొక రకపు రెసిప్పర్, సెర్క్యూమిక్ మరియు మెటల్ యొక్క చాలా మందమైన వాహక పానీయంను సెర్క్యూట్ అని పిలిచే ఒక అల్యూమినా సిరామిక్ ఉపరితలంపై

తయారుచేస్తుంది. కెర్క్యూట్ రెసిప్పర్లు మెటల్ ఫిల్మ్ రెసిప్పర్లు ఒకే రకమైన లక్షణాలను కలిగి ఉంటాయి మరియు సాధారణంగా చిన్న ఉపరితల మౌంట్ చివ్ రకం రెసిప్పర్లు, బహుళ-నిరోధకం నెట్వోర్క్ పిసిబి మరియు అధిక ఫరీక్వెన్సీ రెసిప్పర్లు కోసం ఒక ప్యాకేజీలో ఉపయోగిస్తారు. వారు మంచి ఉష్టోగ్రత షిరత్వం, తక్కువ శబ్దం, మరియు మంచి ఎల్యోజ్ రేటింగ్స్ కానీ తక్కువ ఉపేస ప్రస్తుత లక్షణాలను కలిగి ఉంటారు. మెటల్ ఫిల్మ్ రెసిప్పర్లు "MFR" సంకేతాలతో (ఉదా., MFRI00kC) మరియు కార్బన్ ఫిల్మ్ రకాల కోసం CF తో ముందుగా ఉంటాయి. మెటల్ చిత్తరాల రెసిప్పర్లు E24 ($\pm 5\%$ & $\pm 2\%$ టాలరెన్స్సు), E96 ($\pm 1\%$ టాలరెన్సు) మరియు E192 ($\pm 0.5\%$, $\pm 0.25\%$ & $\pm 0.1\%$ టాలరెన్సు) ప్యాకేజీలు 0.05 (1 / 20 వ వంతు) వాట్ వరకు 1/2 వాట్. సాధారణంగా ఫిల్మ్ రెసిప్పర్లు మాట్లాడుతూ ఖచ్చితమైన తక్కువ శక్తి భాగాలు.

Wire wound Types of Resistor

Another type of resistor, called a **Wire wound Resistor**, is made by winding a thin metal alloy wire (Nichrome) or similar wire onto an insulating ceramic former in the form of a spiral helix similar to the film resistor above.

Wirewound Resistor

These types of resistor are generally only available in very low ohmic high precision values (from 0.01 to 100k ohms) due to the gauge of the wire and number of turns possible on the former making them ideal for use in measuring circuits and Whetstone bridge type applications.

They are also able to handle much higher electrical currents than other resistors of the same ohmic value with power ratings in excess of 300 Watts. These high power resistors are moulded or pressed into an aluminium heat sink body with fins attached to increase their overall surface area to promote heat loss and cooling.

వైర్ గాయం రకాలు

వైర్ గాయం నిరోధకం అని పిలవబడే మరొక రకాన్ని నిరోధకం, ఒక సన్నని మెటల్ మిశ్రమం వైర్ (నిచరోమ్) లేదా మూసివేయడం ద్వారా తయారు చేస్తారు ఇదే వైర్ రూపంలో ఒక ఇన్సులేటింగ్ పింగాటీలో ఉంది పైన ఉన్న చిత్రం నిరోధకంలాంటి మురికి పోలిక్సి.

ఈ రకమైన నిరోధకం సాధారణంగా చాలా మాత్రమే అందుబాటులో ఉంటుంది తక్కువ ohmic అధిక సూక్ష్మత విలువలు (0.01 నుండి 100k ohms నుండి) కారణంగా వైర్ యొక్క గ్యాజ్ మరియు సంఖ్య న సాధ్యం సంఖ్యల సంఖ్య కోలిచే సర్కూఫ్టలో ఉపయోగం కోసం వాటిని ఆదర్శంగా తయారుచేశారు వెటోస్టోన్ వంతెన రకం అనువర్తనాలు. ఇతర రెసిప్టర్లు కంచే ఇవి చాలా ఎక్కువ విద్యుత్ ప్రవాహాలను కూడా నిర్వహించగలవు 300 వాల్స్ కంచే ఎక్కువ శక్తి రేటింగ్స్ ఒకే బిల్యూక్ విలువ. ఇలీసీ అధిక పోకి రెసిప్టర్లు ముడిపడిన లేదా అల్యూమినియం హల్స్ సింక్ శరీరం లోకి నొక్కిన రెక్కలు తో ఒత్తిడి ఉంటాయి 10 వారి మొత్తం ఉపరితల వైశాల్యాన్ని 10 పెంచుతుంది

These special types of resistor are called “Chassis Mounted Resistors” because they are designed to be physically mounted onto heatsinks or metal plates to further dissipate the generated heat. The mounting of the resistor onto a heatsink increases their current carrying capabilities even further.

Another type of wirewound resistor is the Power Wirewound Resistor. These are high temperature, high power non-inductive resistor types generally coated with a vitreous or glass epoxy enamel for use in resistance banks or DC motor/servo control and dynamic braking applications. They can even be used as low wattage space or cabinet heaters.

The non-inductive resistance wire is wound around a ceramic or porcelain tube covered with mica to prevent the alloy wires from moving when hot. Wirewound resistors are available in a variety of resistance and power ratings with one main use of power wirewound resistor is in the electrical heating elements of an electric fire which converts the electrical current flowing through it into heat with each element dissipating up to 1000 Watts, (kW) of energy.

in ohms and for a series AC circuit is given as, $Z = R + X$.

ఈ ప్రత్యేక రకాల మండలం “చసిస్ మోట్ రెసిప్టర్లు” అని పిలుస్తారు, ఎందుకంచే అవి భౌతికంగా పోత్తింక్సి లేదా లోహపు పలకలపైకి ఉత్పన్నం చేయటానికి రూపొందించబడినవి, ఎందుకంచే ఉత్పన్నమైన వేడిని

వెదజల్లుతుంది. పొట్టానీక్ పై మోంటు యొక్క మోంటు వారి ప్రస్తుత వాహక సామర్థ్యాలను మరింత పెంచుతుంది.

మరొక రకం wirewound నిరోధకం పవర్ వైర్ల్యూడ్ నిరోధకం. ఇవి ఎక్కువగా అధిక ఉప్పొగ్రత, అధిక శక్తి కాని ఇన్సుచెట్టివ్ నిరోధకం రకాలు, సాధారణంగా నిరోధక బ్యాంకులు లేదా DC మోటార్ / సర్వ్ నియంత్రణ మరియు డైనమిక్ బోర్డేకింగ్ అనువర్తనాల్లో ఉపయోగం కోసం గాజు లేదా గాజు ఎపోక్సి ఎనామెల్టో పూసినవి. అవి కూడా తక్కువ వాచేజ్ స్పేస్ లేదా క్యాబినేట్ హీటర్లను వాడవచ్చు.

కాని పేరేరక నిరోధక నిరోధక వైర్లును వైకోతో కపిం పింగాటీ లేదా పింగాటీ గొట్టం చుట్టూ గట్టిగా కదులుతుంది. విద్యుత్ వాయవు నిరోధక యంత్రం యొక్క ఒక ప్రధాన ఉపయోగంతో విద్యుత్ నిరోధక అంశాలలో వైర్లోవ్ రెసిప్టర్లు పలు రకాల ప్రతిఫలన మరియు శక్తి రేటింగ్స్ లభిస్తాయి, ఇది విద్యుత్ ప్రవాహాన్ని ఉపంలోకి ప్రవహించే ప్రతి మూలకాన్ని 1000 వాట్ల వరకు వెదజల్లుతుంది (ఉదా. 1kW) శక్తి.

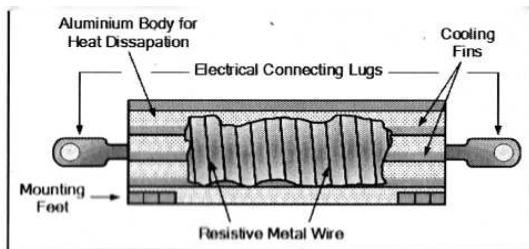
Because the wire of standard wire wound resistors is wound into a coil inside the resistors body, it acts like an inductor causing them to have inductance as well as resistance. This affects the way the resistor behaves in AC circuits by producing a phase shift at high frequencies especially in the larger size resistors. The length of the actual resistance path in the resistor and the leads contributes inductance in series with the “apparent” DC resistance resulting in an overall impedance path of ZOhms.

Impedance (Z) is the combined effect of resistance (R) and inductance (X), measured

When used in AC circuits this inductance value changes with frequency (inductive reactance, $XL = 2\pi fL$) and therefore, the overall value of the resistor changes. Inductive reactance increases with frequency but is zero at DC (zero frequency). Then, wirewound resistors must not be designed or used in AC or amplifier type circuits where the frequency across the resistor changes. However, special non-inductive wirewound resistors are also available.

వరామాటిక వైర్ గాయం నిరోధకాలు యొక్క వైర్ రెసిప్టర్స్ బాడీ లోపల ఒక కాయల్లోకి గాయమవుతుండటం వలన, అది పేరేరేపకు మరియు నిరోధకతను కలిగి ఉండేలా ఒక జండక్కరు వలె పనిచేస్తుంది. ఇది పెద్ద పరిమాణాల రెసిప్టార్లో అధిక పౌనఃపునాయిల వద్ద దశల పిష్టు ఉత్పత్తి చేయడం ద్వారా మౌలిక వలయాలు సర్వ్యాంశులో ప్రవర్తిస్తుంది. నిరోధకం మరియు లీడ్స్ వాస్తవ నిరోధక మార్గం యొక్క పొడవు, సిరీస్ ఇండక్షన్స్ దోహదం చేస్తుంది "సప్షంగా" DC నిరోధం ఫలితంగా 20ohms యొక్క పూర్తి అవరోద మార్గం.

నిరోధకం (Z) అనేది ప్రతిఫుటన (R) మరియు ఇండక్షన్స్ (X), కొలుస్తారు ఫరీక్వెన్సీ (ఇండక్షిటివ్ రియాక్షన్స్, $XL = 27t / L$) తో ఈ ఇండక్షన్స్ విలువ మార్పులను AC సరూచ్యాట్లలో ఉపయోగించినప్పుడు, అందువల్ల, నిరోధకం యొక్క మొత్తం విలువ మార్పులు. వేరేరక ప్రతిచర్య ఫరీక్వెన్సీతో పెరుగుతుంది, అయితే DC (సున్నా పొనఃపున్యం) వద్ద సున్నా ఉంటుంది. అప్పుడు, వైర్చుండ్ రెసిప్పర్డు ఎని లేదా యాంప్లిష్మెంట్ బైప్ సరూచ్యాట్ రూపకల్పనలో లేదా ఉపయోగించకూడదు, ఇక్కడ మౌంటు అంతరంగ ఫరీక్వెన్సీ మారుతుంది. ఏది ఎమైనప్పటికీ, ప్రత్యేకమైన కాని ఇన్వెర్టర్ క్లిప్ విర్యూవుల్ రెసిప్పర్డు కూడా అందుబాటులో ఉన్నాయి.


Because the wire of standard wire wound resistors is wound into a coil inside the resistors body, it acts like an inductor causing them to have inductance as well as resistance. This affects the way the resistor behaves in AC circuits by producing a phase shift at high frequencies especially in the larger size resistors. The length of the actual resistance path in the resistor and the leads contributes inductance in series with the “apparent” DC resistance resulting in an overall impedance path of ZOhms.

Impedance (Z) is the combined effect of resistance (R) and inductance (X), measured

When used in AC circuits this inductance value changes with frequency (inductive reactance, $XL = 27t/L$) and therefore, the overall value of the resistor changes. Inductive reactance increases with frequency but is zero at DC (zero frequency). Then, wirewound resistors must not be designed or used in AC or amplifier type circuits where the frequency across the resistor changes. However, special non-inductive wirewound resistors are also available.

పరామాణిక వైర్ గాయం నిరోధకాలు యొక్క వైర్ రెసిప్పర్ బాటీ లోపల ఒక కాయల్లోకి గాయమవుతుండటం వలన, అది పేరేరేపకు మరియు నిరోధకతను కలిగి ఉండేలా ఒక ఇండక్షరు వలె పనిచేస్తుంది. ఇది పెంచ పరిమాణాల రెసిప్పర్లో అధిక పొనఃపున్యాల వద్ద దశల పిష్టు ఉత్పత్తి చేయడం ద్వారా మౌలిక వలయాలు సరూచ్యాట్లలో ప్రవర్తిస్తుంది. నిరోధకం మరియు లీడ్స్ నిష్పత్తి నిరోధక మార్పం యొక్క పొడవు, సిరీస్ ఇండక్షన్సునుగా దోహదం చేస్తుంది "స్పుఫ్టంగా" DC నిరోధం ఫలితంగా ZOhms యొక్క పూర్తి ఆవరోధ మార్పం. నిరోధకం (Z) అనేది ప్రతిఫుటన (R) మరియు ఇండక్షన్స్ (X), కొలుస్తారు ఫరీక్వెన్సీ (ఇండక్షిటివ్ రియాక్షన్స్, $XL = 27t / L$) తో ఈ ఇండక్షన్స్ విలువ మార్పులను AC సరూచ్యాట్లలో ఉపయోగించినప్పుడు, అందువల్ల, నిరోధకం యొక్క

యొక్క మొత్తం విలువ మార్పులు. పీరేరక ప్రతిచర్య ఫరీక్వెన్సీతో పెరుగుతుంది, అయితే DC (సున్నా పోనఃపున్యం) వద్ద సున్నా ఉంటుంది. అప్పుడు, వైర్చండ్ రెసిప్టర్లు ఎని లేదా యంపిషైయర్ షైప్ సర్క్యూట్ రూపకల్పనలో లేదా ఉపయోగించకూడదు, ఇక్కడ మౌంటు అంతరంగ ఫరీక్వెన్సీ మారుతుంది. ఏది ఏమైనప్పటికీ, ప్రత్యేకమైన కాని ఇన్వాయడిక్ విర్యూవు రెసిప్టర్లు కూడా అందుబాటులో ఉన్నాయి.

Wirewound Resistor

Who wound resistor construction

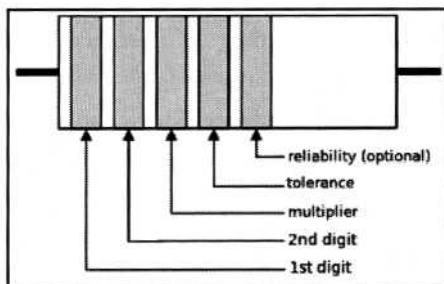
Wirewound resistor types are prefixed with a “WH” or “W” notation (eg WH1OQ) and are available in the WH aluminium clad package ($\pm 1\%$, $\pm 2\%$, $\pm 5\%$ & $+10\%$ tolerance) or the W vitreous enamelled package ($+1\%$, $+2\%$ & $\pm 5\%$ tolerance) with power ratings from 1W to 300W or more.

వైర్‌డ్రౌఫ్ రెసిప్చర్ రకాలు "WH" లేదా "W" నోటీషన్ (ఉదా WH1OQ) తో ముందుగా ఉంటాయి మరియు WH అల్యూమినియం ధరించిన ప్యాకేజీ ($\pm 1\%$, $\pm 2\%$, $\pm 5\%$ & $+10\%$ సహనం) లేదా W మిశ్రమ 1W నుండి 300W లేదా అంతకంచే ఎక్కువ నుండి శక్తి రెటింగ్స్ అమర్చిన ప్యాకేజీ ($+1\%$, $+2\%$ & $\pm 5\%$ సహనం).

THE COLOUR CODES IN A RESISTOR

There are colour bands on the resistances which is used to denote the value of Resistors. This way small space on the resistance is utilised to write the value of resistance on the Resistors. The colours are given the values as below:

Black- 0, Brown-1, Red-2, Orange-3, Yellow-4, Green- 5, Blue-6, Violet-7, Grey-8, White-9,


Gold and Silver are utilised to denote the tolerance values of 5% and 10% respectively.

How to use the code:

We have a FOUR Band scheme which is most common. First and second Bands are for the two digits and third band is for Multiplier and the fourth band is for tolerance.

Multiplier is $10^{\text{Color Code}}$. For example if the third band is RED. The Multiplier will be $10^2 = 100$.

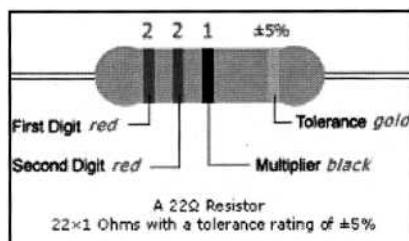
Thus the Multipliers for Black= $10^0=1$, For Brown= $10^1=10$ and so on

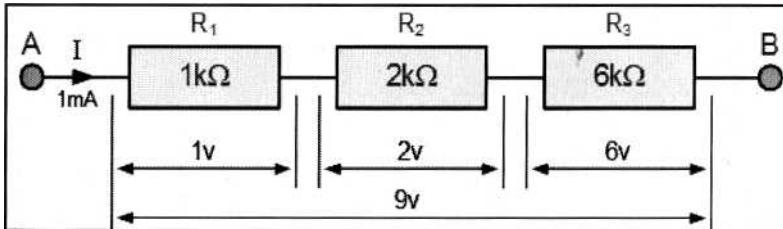
రెసిప్చర్ యొక్క విలువను సూచించడానికి ఉపయోగించే నిర్ధంకతలాపై

రంగు బ్యాండ్లు ఉన్నాయి. ప్రతిఘటనవై ఈ చిన్న ప్రదేశం రెసిష్టర్సు నిరోధక విలువను వీరాయడానికి ఉపయోగించబడుతుంది. రంగులు కీరింద విలువలు ఇవ్వబడ్డాయి: నారింజ -3, పసుపు -4, గీరీన్ -5, భూ -6, వైలెట్ -7, గీర్ -8, వైల్ -9, బంగారం మరియు సిల్వర్ వరుసగా 5% మరియు 10% సహనం విలువలను సూచించడానికి ఉపయోగిస్తారు. కోడ్ ఎలా ఉపయోగించాలి: మాకు చాలా సాధారణ బ్యాండ్ పథకం ఉంది. మొదటి మరియు రెండవ బాండ్ను రెండు అంకెలు మరియు మూడవ బ్యాండ్ గుణకం కోసం మరియు నాల్చివ బ్యాండ్ సహనం కోసం ఉంది.

Practical Exercise: Measuring Resistance Values using colour codes and verify the readings by measuring in a Digital Multimeter

Example: Take the example of a resistor given below:


Resistor Band Codes


First Digit= 2 (code for RED), Second Digit= 2 (Code for RED), Third band is Multiplier $10^0 = 1$ and the Fourth band is Gold indicating a tolerance of 5%.

Thus the value of this Resistor will be : $2\ 2 \times 1 = 22$ Ohms having tolerance of 5%. Verify the readings by measuring the resistance as described in Multimeter section.

SERIES AND PARALLEL CONNECTIONS OF RESISTORS

Series Resistor Connections

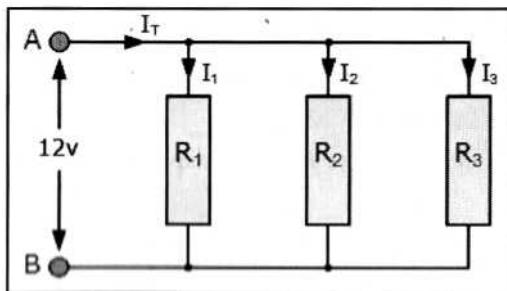
Series Resistor Connections

- Resistors that are daisy chained together in a single line are said to be connected in **SERIES**. One end of the Resistor is connected to the other end of the other and so on.
- Series connected resistors have a common **Current** flowing through them.

$$\text{Total} = R_1 + R_2 + R_3 + \dots$$

- The total circuit resistance of series resistors is equal to:

$$R_{\text{total}} = R_1 + R_2 + R_3 + \dots$$


- Total circuit voltage is equal to the sum of all the individual voltage drops.

$$V =$$

$$\text{total} = V_1 + V_2 + V_3 + \dots$$

- The total resistance of a series connected circuit will always be greater than the highest value resistor.

Parallel Resistor Connection

Resistors connected in parallel

Resistors in Parallel

Resistors are said to be connected together in “Parallel” when both of their terminals are respectively connected to each terminal of the other resistor or resistors. Unlike the previous series resistor circuit, in a parallel resistor network the circuit current can take more than one path as there are multiple paths for the current. Then parallel circuits are classed as current dividers.

రెసిష్టర్లు వాటి చెర్కెనల్ను రెండింటిలో ఇతర నిరోధకం లేదా రెసిష్టర్లు ప్రతి చెర్కెనల్లుకు అనుసంధానించబడి ఉన్నప్పుడు “సమాంతర” లో కలిసి కలుపబడతాయి. మునుపటి సిరీస్ రెసిష్టర్ సర్క్యూట్ వలె కాకుండా, సమాంతర నిరోధకం నెట్వర్క్ ప్రస్తుత కోసం ఒహుళ మాధాలు ఉన్నందున సర్క్యూట్ కరెంట్ ఒకటి కంటే ఎక్కువ మాధాల్లో పడుతుంది. అప్పుడు సమాంతర వలయాలు ప్రస్తుత dividers గా వర్ణికరించబడ్డాయి.

- Resistors that have both of their respective terminals connected to each terminal of another resistor or resistors are said to be connected in **PARALLEL**.

- Parallel resistors have a common **Voltage** across them.

$$\begin{matrix} V \\ S=V_1 = V_2 = V_3 \dots \text{etc} \end{matrix}$$

- Total resistance of a parallel circuit is equal to:

$$\begin{matrix} J_1 = -J_2 + J_3 + \dots + J_n \\ R_r = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}} \end{matrix}$$

- Total circuit current flow is equal to the sum of all the individual branch currents added together.

$$I_{\text{total}} = I_1 + I_2 + I_3 + \dots \text{etc}$$

- The total resistance of a parallel circuit will always be less than the value of the smallest resistor.

Resistor Power Rating

- The larger the power rating, the greater the physical size of the resistor to dissipate the heat.
- All resistors have a maximum power rating and if exceeded will result in the resistor overheating and becoming damaged.
- Standard resistor power rating sizes are 1/8 W, 1/4 W, 1/2 W, 1 W, and 2 W.
- Low ohmic value power resistors are generally used for current sensing or power supply applications.
- The power rating of resistors can be calculated using the formula:

$$\text{Power (P)} = V \times I = I^2 R = \frac{V^2}{R}$$

- In AC Circuits the voltage and current flowing in a pure resistor are always “/« phase” producing 0° phase shift..
- When used in AC Circuits the AC impedance of a resistor is equal to its D(I Resistance.
- The AC circuit impedance for resistors is given the symbol Z.
-

Practical Exercise: Identifying Power Rating of a resistor by using size

As the dissipated resistor power rating is linked to their physical size, a 1/4 (0.250) W resistor is physically smaller than a 1W resistor, and resistors that are of the same ohmic value are also available in different power or wattage ratings. Carbon resistors, for example, are commonly made in wattage ratings of 1/8 (0.125)W, 1/4 (0.250)W, 1/2 (0.5)W, 1W, and 2 Watts.

Generally speaking the larger their physical size the higher its wattage rating.

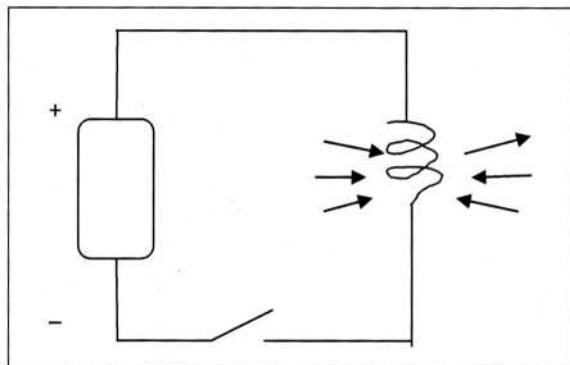
Wirewound power resistors come in a variety of designs and types, from the standard smaller heatsink mounted aluminium body 25W types as we have seen previously, to the larger tubular 1000W ceramic or porcelain power resistors used for heating elements.

చెదరగొట్టబడిన రెషోర్ పవర్ రేటింగ్ వారి భౌతిక పరిమాణంలో అనుసంధానించబడినప్పుడు, ఒక 1/4 (0.250) W నిరోధకం ఒక 1W నిరోధకం కంటే భౌతికంగా చిన్నదిగా ఉంటుంది, మరియు అదే ఒప్పమై విలువ కలిగిన రెసిష్టర్లు వివిధ శక్తి లేదా వాచేజ్ రేటింగ్స్ అందుబాటులో ఉంటాయి. ఉదాహరణకు కార్బన్ రెసిష్టర్లు సాధారణంగా 1/8 (0.125) W, 1/4 (0.250) W, 1/2 (0.5) W, 1W మరియు 2 వాట్స్ యొక్క వాచేజ్ రేటింగ్లలో తయారు చేయబడతాయి. సాధారణంగా వారి భౌతిక పరిమాణాన్ని ఎక్కువగా దాని వాచేజ్ రేటింగ్ అని చెప్పుతుంది. Wirewound పవర్ రెసిష్టర్లు పలు రకాల నమూనాలు మరియు రకాల్లో లభిస్తాయి, పొరామాణిక చిన్న హెత్తింక్ అల్యూమినియం బాడీ 25W రకాలను మనం గతంలో చూసినట్లుగా, తాపన అంశాలకు ఉపయోగించే పెద్ద గొట్టం 1000W సిరామిక్ లేదా పింగాణీ శక్తి రెసిష్టర్లకు మౌంట్ చేసింది.

Inductors

TYPES OF INDUCTORS, SPECIFICATIONS AND APPLICATIONS

THE INDUCTOR



The Inductor is a Coil of WIRES. This device stores Energy in the Form of Magnetic Energy . The Energy exists till there is current Flowing through it. When the current is not the Energy will not be there i.e it will no more a Magnet. Inductor opposes the change in Electric current.

[When an electrical current flows through a wire conductor, a magnetic flux is developed around the conductor producing a relationship between the direction of this magnetic flux which is circulating around the conductor and the direction of the current flowing through the same conductor. This well known relationship between current and magnetic flux direction is called, "Fleming's Left Hand Rule". This phenomenon is known as Electromagnetism.]

ಇಂಡಕ್ಟರ್ ವೈಲ್ಸ್ ಯೊಕ್ಕ ಕಾರ್ಯಲ್ಯ. ಈ ಪರಿಕರಂ ಮಾಗ್ನಿಟಿಕ್ ಎನ್ಟಿ ಫಾರಂ ಯೊಕ್ಕ ಶಕ್ತಿನಿ ನಿಲ್ದಾ ಚೆನ್ನುಂದಿ. ಪ್ರಸ್ತುತ ವಿರ್ಯತ್ ಪ್ರವರ್ಣಿಂಚೆ ವರಕು ಶಕ್ತಿ ಉಂದಿ. ಪ್ರಸ್ತುತ ಶಕ್ತಿ ಎಪ್ಪುಡು ಉಂಡಿದು ಅನಗಾ ಅದಿ ಇಕ ಮಾಗ್ನಿಟ್ ಕಾದು. ಎಲಕ್ಟ್ರಿಕ್ ಕರೆಂಟ್ ಲೋ ಮಾರ್ಪಣ ಇಂಡಕ್ಟರ್ ವ್ಯತಿರೇಕಿಂಚಾರು. [ಒಕ ವೈರ್ ಕಂಡಕ್ಟರ್ ದ್ವಾರಾ ಒಕ ವಿರ್ಯತ್ ಪ್ರವಾಪಂ ಪ್ರವರ್ಣಿಸುವುದು, ಕಂಡಕ್ಟರ್ ಚುಟ್ಟೂ ಪ್ರವರ್ಣಿಂಚೆ ಮರಿಯ ಅದೆ ಕಂಡಕ್ಟರ್ ದ್ವಾರಾ ಪ್ರವರ್ಣಿಂಚೆ ಪ್ರಸ್ತುತ ದಿಶಕು ಚುಟ್ಟೂ ತಿರುಗುತ್ತುವು ಈ ಅಯಸ್ಕಾಂತ ಸ್ರಾವಮು ಯೊಕ್ಕ ದಿಶಕು ಮಧ್ಯ ಸಂಬಂಧಾನ್ನಿ ಉತ್ಪತ್ತಿ ಚೇಸೇ ಕಂಡಕ್ಟರ್ ಚುಟ್ಟೂ ಒಕ ಅಯಸ್ಕಾಂತ ಪ್ರವಾಪಂ ಅಭಿವೃದ್ಧಿ ಚೆಂದುತ್ತುಂದಿ. ಪ್ರಸ್ತುತ ಮರಿಯ ಅಯಸ್ಕಾಂತ ಪ್ರವಾಪ ದಿಶಲ ಮಧ್ಯ ಈ ಬಾಗಾ ತೆಲಿಸಿನ ಸಂಬಂಧಂ "ಷೈಮಿಂಗ್ ಯೊಕ್ಕ ಲೆಫ್ಟ್ ಹ್ಯಾಂಡ್ ರೂಲ್" ಅನಿ ಪಿಲುವಬಡುತ್ತುಂದಿ. ಈ ದೃಗ್ಯಾಪಯಾನ್ನಿ ವಿರ್ಯದಯಸ್ಕಾಂತತ್ವಂ ಅನಿ ಪಿಲುಸ್ತಾರು.]

Practical Experiment: Make an Electromagnet with a Coil

Make a circuit as below:

Figure 4.1: Experiment of an Electromagnet

Connect a battery with a switch and an Coil.

Take some Pins.

Keep the switch in OFF position and bring the pins near the coil. Nothing happens. Keep the switch in ON position and bring the Pins near the coil.

You will observe that the coil has become a magnet as Electric current flows through

ಒಕ ಸ್ಯಾಚ್ ಮರಿಯ ಒಕ ಕಾಯಲ್ಲೋ ಬ್ಯಾಟರೀನಿ ಕನೆಕ್ ಚೆಯಂಡಿ.

ಈನ್ನು ವಿನ್ನ ತೀಸುಕೋಂಡಿ.

OFF ಸ್ಥಾನಂ ಲೋ ಸ್ಯಾಚ್ ಉಂಟಂಡಿ ಮರಿಯ ಕಾಯಲ್ ಸಮೀಪಂಲೋ ವಿನ್ನ ತೀಸುಕುನಿ. ಏದೀ ಜರಗಲೇದು. ಸ್ಥಾನಂ ಲೋ ಸ್ಯಾಚ್ ಉಂಟಂಡಿ ಮರಿಯ ಕಾಯಲ್ ಸಮೀಪಂಲೋ ವಿನ್ನ ತೀಸುಕುನಿ.

ಎಲ್ಲಕ್ಕೂ ಕರೆಂಟ್ ಪ್ರವಾಹಂ ದ್ವಾರಾ ಕಾಯಲ್ ಒಕ ಅಯಸ್ಸಾಂತಂ ಅಯಿಂದನಿ ಮೀರು ಗಮನಿಂಚವಚು

it and it attracts the Pins.

But there is also another important property relating to a wound coil that also exists, which is that a secondary voltage is induced into the same coil by the movement of the magnetic flux

as it opposes or resists any changes in the electrical current flowing it.

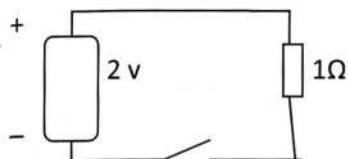
Thus point to remember is the following:

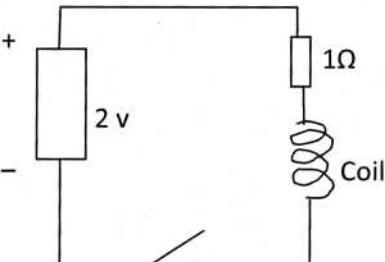
1. When Electric current flows through the coil it develops a magnetic field around it.
2. The magnetic field keeps on expanding.
3. The changing magnetic field then generates a Voltage and a current which flows opposite to the existing Voltage. Thus the inductor affects the rate of rise and fall of current.
4. This happens till the magnetic field is stabilised and then there is no opposing current develops. The current develops because of changing magnetic field.
5. The Coil or Inductor then acts like a Short circuit act as Zero resistance and will pass all the Current.
6. The inductor DELAYS the current build up and Stores the Energy in the form of Magnetic Field.

ఇది మరియు అది పిన్స్ ఆకర్షిస్తుంది.

కానీ ఒక గాయం కాయలుకు సంబంధించిన మరొక ముఖ్యమైన ఆస్తి కూడా ఉంది, ఇది ద్వారా వోల్టేజ్ అయస్కాంత సీరావకం యొక్క ఉద్యమం ద్వారా అదే కాయల్లోకి పోరేషన్ ఉంది తేదా విద్యుత్ ప్రవాహంలో ఏదైనా మార్పులను వ్యతిరేకిస్తుంది.

అందువలన గుర్తుంచుకోవలసినది ఈ కీరింది విధంగా ఉంది:


1. కాయల్ ద్వారా ఎలక్ట్రిక్ కరెంట్ ప్రవహిస్తున్నప్పుడు, దాని చుట్టూ ఒక అయస్కాంత క్షేత్రాన్ని అభివృద్ధి చేస్తుంది.
2. అయస్కాంత క్షేత్రం విస్తరించడానికి ఉంచుతుంది.
3. మారుతున్న అయస్కాంత క్షేత్రం అప్పుడు ఒక వోల్టేజ్ ను ఉత్పత్తి చేస్తుంది మరియు ప్రస్తుతమున్న వోల్టేజ్ ను వ్యతిరేకం ప్రవహిస్తుంది. అందుచే ఇండక్షన్ ప్రవాహం మరియు ప్రస్తుత పతనం రేటును ప్రభావితం చేస్తుంది.


4. అయస్కాంత క్షేత్రం ఫీరీకరించబడే వరకు ఇది జరుగుతుంది, అప్పుడు ప్రస్తుత వ్యతిరేకత అభివృద్ధి చెందదు. అయస్కాంత క్షేత్రాన్ని మార్పడం వలన ప్రస్తుతము అభివృద్ధి చెందుతుంది.

5. కాయల్ లేదా ఇండక్టర్ అప్పుడు జోర్ ప్రతిష్టంనగా ఒక చిన్న సర్యూట్ చర్య వలె వ్యవహరిస్తుంది మరియు అన్ని ప్రస్తుత పోస్ చేస్తుంది.

6. ఇండక్టరు డీలర్స్ ప్రస్తుత నిర్మాణం మరియు మాగ్నిటిక్ ఫీల్డ్ రూపంలో శక్తిని నిల్వ చేస్తుంది.

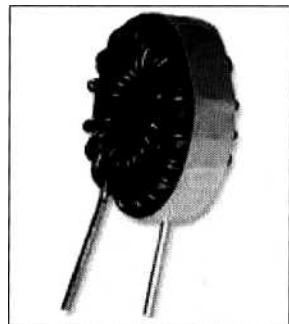
Experiment: To Study the Current Flow Delay Action of the Inductor

	$I = V/R = 2 \text{ V}/1\Omega = 2 \text{ A}$. If we measure the current it will be 2 A immediately when the switch is closed and it will be 0 immediately when the switch is Closed. If we replace the Resistor with a Bulb the Bulb will immediately GLOW to full brightness on switch ON and will be OFF immediately when the Switch is OFF.
---	--

	Now a Coil is introduced in the Circuit. If we measure the current in the Circuit it will not RISE immediately to 2 A. Rather it will take some time to reach to 2 A. Similarly when we put the Switch OFF the current will still be there and will become 0 after some DELAY. Replace the Resistor with a BULB. The bulb is very dim at the time of Switch on and GLOWS to full brightness only after some delays. Similarly on switch OFF it becomes DIM and becomes OFF only after DELAY.
--	--

by inducing a magnetic field in itself or in the core as a result of the current passing through the coil. This results in a much stronger magnetic field than one that would be produced by a simple coil of wire.

Inductors are formed with wire tightly wrapped around a solid central core which is in be either a straight cylindrical rod or a continuous loop or ring to concentrate their magnetic flux.


The schematic symbol for an inductor is that of a coil of wire so therefore, a coil of wire can also be called an **Inductor**.

Inductors are usually categorised according to the type of inner core they are wound around, for example, hollow core (free air), solid iron core or soft ferrite core with the different core types being distinguished by adding continuous or dotted lines next to

Compare the action to accelerator of a car. The car accelerates and gains speed only after delayed time then the speed is stabilised.

In its most basic form, an inductor is nothing more than a coil of wire wound around a central core. For most coils the current, (i) flowing through the coil produces a magnetic flux, (NO) around it that is proportional to this flow of electrical current.

The inductor, also called a choke, is another passive type electrical component which is just a coil of wire that is designed to take advantage of this relationship the wire coil as shown below.

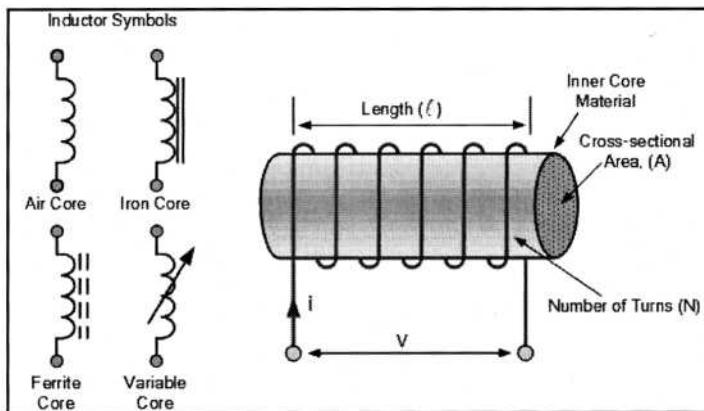
Figure 4.2 A Typical Inductor

ఈక కారు యొక్క యాక్సిలరేటర్ పోల్యూస్ ఒండి. కారు వేగవంతం మరియు ఆలస్యం అయిన తరువాత మాత్రమే వేగం వేగవంతం చేస్తుంది, అప్పుడు వేగం నిలకడగా ఉంటుంది.

దాని ప్రధాన రూపంలో, ఒక ఇండక్షన్ కేంద్ర కేంద్రం చుట్టూ ఒక కాయల్ వైర్ గాయం కంచే ఎక్కువ కాదు. చాలా కాయల్ని కోసం ప్రస్తుతము, (i) కాయల్ ద్వారా

ప్రవహించే ఒక అయస్కాంత ప్రవాహం, (N0) దాని విద్యుత్ ప్రవాహానికి అనులోమానుపాతంలో ఉంటుంది.

ఒక చోక్ అని కూడా పిలవబడే ఇండక్షర్, మరొక నిమ్మియ రకం ఎలక్ట్రికల్ భాగం, ఇది వైర్ ల కేట్ యొక్క ఒక కాయల్ ఈ సంబంధం యొక్క లాభం కోసం రూపొందించబడింది


కాయల్ ద్వారా ప్రస్తుత పాసింగ్ ఫలితంగా దానిలో లేదా కోర్ట్ ఒక అయస్కాంత క్షేత్రాన్ని ఏరోపించడం ద్వారా. దీని ఫలితంగా అతను ఒక సాధారణ కాయల్ వైర్ ద్వారా ఉత్పత్తి చేసే దాని కంచే చాలా బలమైన అయస్కాంత క్షేత్రంలో ఉంటాడు.

నేను వాయు మాగ్నిటిక్ ఫక్సును దృష్టి కేంద్రీకరించడానికి ఒక ప్రత్యక్ష సిలిండరు రాడ్ లేదా ఒక నిరంతర లూప్ లేదా రింగ్ గా ఉండే II గా ఉండే ఒక ఘన కేంద్ర కోర్ చుట్టూ వైర్ ల చుట్టుబడి వైర్ లో ఏర్పడుతుంది.

నేను అతను ఒక ఏరోపకు చిహ్నమైన చిహ్నం, అందుచే కాయల్ వైర్ యొక్క, కాయల్ వైర్ కు కూడా ఇండక్షరుగా పిలుస్తాము.

ఉదాహరణకు ఇండోర్ కారకాలు సాధారణంగా అంతర్గత కోర్ రకానికి చెందినవిగా వర్ధికరించబడతాయి, ఉదాహరణకు, పెశాలో కోర్ (ఫ్రీ ఎయిర్), ఘన ఇనుప కోర్ లేదా మృదువైన ఫెర్నరైట్ కోర్ విల్లో వేర్వేరు కోర్ రకాలు వేర్వేరు ప్రధాన రకాలుగా నిరంతర లేదా చుక్కల పైలిల్లెల్కు పంక్కలు

INDUCTOR SYMBOLS

The current, i that flows through an inductor produces a magnetic flux that is proportional to it. But unlike a **Capacitor** which oppose a change of voltage across their plates, an inductor opposes the rate of change of current flowing through it due to the build up of self-induced energy within its magnetic field.

In other words, inductors resist or oppose changes of current but will easily pass a steady state DC current. This ability of an inductor to resist changes in current and which also relates current, i with its magnetic flux linkage, NO as a constant of proportionality is called Inductance which is given the symbol L with units of Henry, (H) after Joseph Henry.

దానికి అనుగుణంగా. కానీ వాటి పేటల్లు అంతటా వోల్టేజ్ మార్పును వ్యతిరేకించే ఒక కెపాసిటర్ వలె కావుండా, ఒక అవాహకం దాని అయస్కాంత క్షేత్రంలో స్వయి-వ్యవరీత శక్తిని పెంచుకోవడం ద్వారా ప్రస్తుత ప్రవాహం యొక్క మార్పు రేటును వ్యతిరేకించింది.

ఇతర మాటలలో, వ్యవరీత కాలు ప్రస్తుత మార్పులను అడ్డుకుంటాయి లేదా వ్యతిరేకించాయి కానీ సులభంగా స్థిరమైన ప్లైట్ DC కరెంట్స్ పంపుతాయి. ప్రస్తుతమున్న మార్పులను అడ్డుకునే ఒక ఇండక్షన్ యొక్క సామర్థ్యము, మరియు

ప్రస్తుతమున్న దాని సంబంధము, దాని మాగ్నిటిక్ ప్లక్స్ లింకేజ్ తో, ఎ ఫిరమైన
01 అనుపాతము వంటిది, ఇండక్షన్లు అని పిలువబడుతుంది, ఇది హెన్రీ, హాచ్

Because the Henry is a relatively large unit of inductance in its own right, for the smaller inductors sub-units of the Henry are used to denote its value. For example:

ఎందుకంటే హెన్రీ తన సొంత హక్కులో వేరేపితమైన పెద్ద యూనిట్, ఎందుకంటే హెన్రీ యొక్క చిన్న వేరేపక సబ్-యూనిట్లు దాని విలువను సూచించడానికి ఉపయోగిస్తారు. ఉదాహరణకి:

Inductance Prefixes

Prefix	Symbol	Multiplier	Power of Ten
milli	m	1/1,000	10^3
micro	μ	1/1,000,000	10^{-6}
hano	N	1/1,000,000,000	10^{-9}

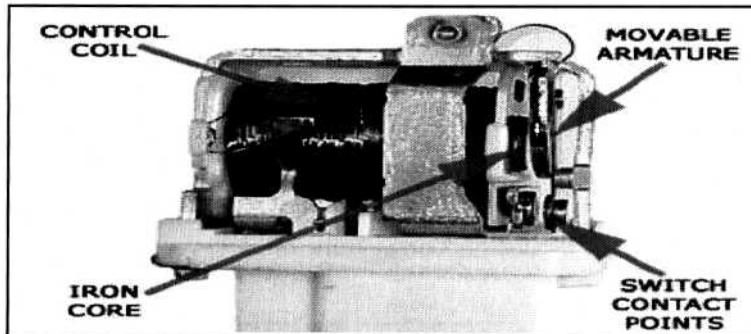
So to display the sub-units of the Henry we would use as an example:

- $1mH = 1$ milli-Henry — which is equal to one thousandths (1/1000) of an Henry.
- $100\mu H = 100$ micro-Henries — which is equal to 100 millionth's (1/1,000,000) of a Henry.

The capacity of the inductors is controlled by the following:

- The number of turns of Coils.
- The materials that the Coils are wrapped around called (X)RE.
- The cross sectional area of the coil. The larger the cross section the longer the Inductance.

Practical Exercise: Dismantle and identify the different parts of a relay


There are four main parts in a relay. They are

1. Electromagnet
2. Movable Armature
3. Switch point contacts
4. Spring

The figures given below show the dismantled parts of a simple relay.

Relay Construction

It is an electro-magnetic relay with a wire coil, surrounded by an iron core. When electricity flows through the coil it produces magnetic flux and attracts the armature till

it closes the contact to the switch. These parts are safely held with the help of a spring.

Practical -Identify Different Types of Inductors

A diverse electronic component used in a wide range of applications requires various types of inductors. These are of different shapes, sizes including the wire wound and layer inductors. Different types of inductors include high-frequency inductors[^]. nwer supply line inductors or power inductors and inductors for general circuits. differentiation of the inductors is based on the type of winding as well as the core used

వివిధ రకాలైన అనువర్తనాల్లో ఉపయోగించే విభిన్న ఎలక్ట్రానిక్ భాగం వివిధ రకాలైన ఇండక్షన్ అవసరం. ఇని వేర్యేరు ఆకారాలు, వైర్ గాయం మరియు పరిమితి ilayer పేరేరకాలు నంటి పరిమాణాలు. వివిధ రకాలైన

పేరేరకాలు అధిక-ఫీర్కెన్స్ పేరేరకాలు ఉన్నాయి. | n »సరఫరా సరఫరా లైన్ పేరేరెపకులు లేదా విద్యుత్తు పేరేరకాలు మరియు సాధారణ సరూచ్యాటుకు పేరేరకాలు. ఇండక్షర్ యొక్క భేదం వైండింగ్ యొక్క రకాన్ని అలాగే ఉపయోగించిన కోర్ ఆధారంగా ఉంటుంది

Air Core Inductors

In air core inductors the Core is missing. These type of Inductors are large in size as they can't offer more inductance Without a Core. These are used in Radio and TV Receivers and in UHF I Frequency applications.

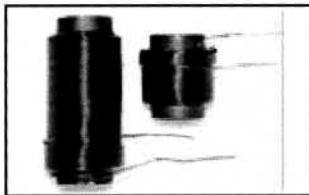
Figure 4.3: Air Core Inductors

ఎయిర్ కోర్ ఇండక్షర్, ఎయిర్ కోర్ పేరేరెపకులు కోర్డ్ లేదు. ఈ రకమైన ఇన్స్క్రూటర్ పెట్ట పరిమాణంలో ఉన్నాయి, ఎందుకంటే అని ఒక కోర్ లేకుండా ఎక్కువ ఇండక్షన్ను అందించలేవు. ఈ రేడియో మరియు TV రిస్వర్ మరియు inductive నేను UHF నేను frequency అప్పికేషన్లు ఉపయోగిస్తారు.

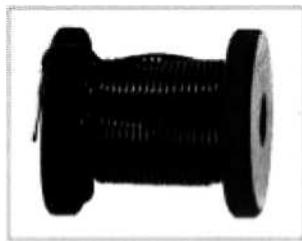
Ferro Magnetic or Iron Core Inductors

The Iron Core inductors have Iron as their Core. These are not suitable for High Frequency applications as they have Eddy Current and Hysteresis losses. The Transformer is an example of Iron Core Inductors.

ఐరన్ కోర్ పేరేరెపకులు వారి కోర్డ్ ఐరన్ కలిగి ఉన్నారు. ఇవి ఎడ్డి కరెంట్ మరియు హిష్ట్రేసిస్ నష్టాలు కలిగి ఉన్నందున ప్రో ఫీర్కెన్స్ అనువర్తనాలకు ఇవి సరిపోవు. టీరాన్సాఫ్రోర్ ఐరన్ కోర్ ఇండక్షన్ యొక్క ఒక ఉదాహరణ.

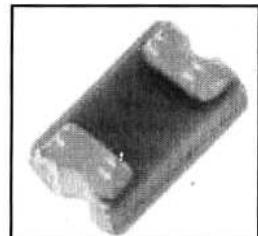

Figure 4.4: Iron Core Inductors

FERRITE CORE INDUCTORS



Ferrite Core Inductors have Ferrite (a metal oxide ceramic based around a mixture of Ferric Oxide Fe_2O_3). These have small sizes and are good for High Frequency applications due to low core losses.

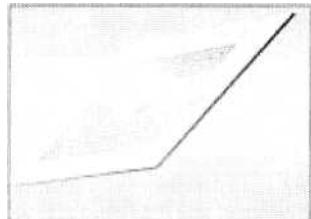
Figure 4.5: Ferrite Core Inductors Toroidal Core Inductors



Fluuro 4.7: Bobbin bnssd Inductors

The coil is wounded on the Bobbin. This is used in Switched Mode Power Supply and Power converters.

Multilayered inductors


Figure 4.8: Multilayered Inductor

A multilayer inductor contains a first conductive coil pattern and a second conductive coil pattern which are arranged in two layers in the upper part of a multi-layered body and are connected electrically in a consecutive manner in series to 2 more conductive coil patterns disposed in the lower part of the multi-layered body and therefore forming a spiral coil. These are mainly used in Mobile devices and also in Switched Mode Power Supplies and small DC-DC Converters.

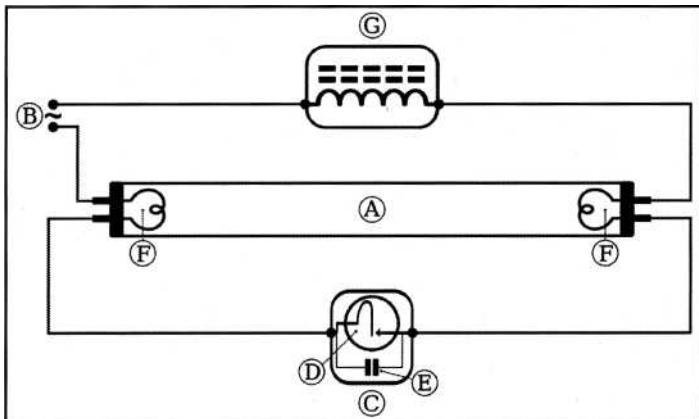
ఒక మల్టీలెయర్ జిండక్షార్ ఒక మొదటి వాహక కాయల్ నమూనా మరియు ఒక రెండవ లేయర్ బాడీ యొక్క ఎగువ భాగంలో రెండు పారల్లో ఏర్పాటు చేయబడిన రెండో వాహక కాయల్ నమూనాను కలిగి ఉంటుంది మరియు వరుస క్రమంలో విద్యుత్తో అనుసంధానించబడిన 2 వరుస వాహక కాయల్ నమూనాలను ఒప్పుళ లేయర్ బాడీ యొక్క తక్కువ భాగం మరియు అందువలన ఒక మరి కాయల్ ఏర్పరుస్తుంది. ఇవి ప్రధానంగా మొబైల్ పరికరాల్లో మరియు స్మిచ్ మోడ్ పవర్ స్టేషన్లో మరియు చిన్న DC-DC కన్వర్టర్లలో ఉపయోగించబడతాయి.

Thin Film Inductors4

These are completely different from the conventional chip-type inductors wound with copper wire. In this type, tiny inductors are formed using thin-film processing. It creates the chip inductor for high-frequency applications, which ranges from about 10 nH to 10 mH .

WA/zr is Reactance: As the resistor limits the current so does the REACTANCE in the inductor limits the flow of current. The formula for reactance is as below:

$$X = 2\pi f L \text{ Ohms}$$


Where X_L is Inductance in Ohms, f is frequency in Hertz and L is inductance in H .

For DC Currents: The Value of f will be Zero. Thus the Reactance offered is 0. Remember that for DC the Inductor acts like a SHORT CIRCUIT just like a WIRE.

For AC Circuits: The value of f will increase and as the frequency increases the REACTANCE increases. Remember thus that for High Frequency circuits the Inductor acts like an OPEN CIRCUIT.

Applications of Inductors

I, Application of Cl iOKE in Tubelights:

Figure 4.10: A typical Tubelight Circuit

A: Fluorescent tube, B: Power (+220 volts), C: Starter, D: Switch (bi-metallic thermostat), E: Capacitor, F: Filaments, G: Ballast

CHOKE is nothing but an Inductor and Starter consists of a Bimetallic Thermostat Switch and a Capacitor.

In a tube light, Ionization should take place inside tube to get Ions produces which induces light, To get Ionization needs high voltage at starting , Once it gets ionized, after that no need of High voltage, It mean at starting we require high voltage. Tube light will have Choke (which is an Inductor) and starter contains capacitor in parallel with a Bimetallic switch.

When you switch on starter bulb is short circuited and heating current flows through series circuit. After some time (few second) gas bulb is heated enough and bi-metal electrode break the series circuit. Sudden reduce in circuit current causes induction of high voltage on inductor and so on the opposite electrodes of neon tube. Neon tube starts to glow giving the light. At the same time the starter bulb continues to glow and keep hot preventing bi-metal electrode to close again. Start of neon tube may be clean or through few attempts (flickering). Inductor limits the neon tube voltage when it glows to about 50V.

The capacitor is for EMI suppression(which is of high frequency) and will reduce the humming sound. We will learn in the Capacitor section that Capacitor acts as short circuit for High Frequencies. This is typically a fairly-small value - anywhere between 1nF to 10nF ,

depending upon who made your particular starter.

A: ఫ్లోరోనెంట్ టూబ్స్, B: పవర్ (+220 వోల్టులు), C: ప్లాటినియం, D: సిఫ్ట్ డైఫ్యూషన్ మెటాలిక్ ధర్మప్లాట్), E: కాపాసిటర్, F: ఫిలమెంట్స్, G: బ్యాలష్ట్ చోక్ ఆనేది ఇండెక్స్ మాత్రమే మరియు ప్లాటర్ ఒక బైమెటాలిక్ ధర్మప్లాట్ సిఫ్ట్ డైఫ్యూషన్ మెటాలిక్ ధర్మప్లాట్ మరియు ఒక క్యాపింటర్.

ఒక టూబ్స్ లైట్ లో, ఐయోన్స్ ను టూబ్స్ లోపల ఉంచాలి. ఐయోన్స్ కాంతిని పేరేరేపిస్తుంది, అయిస్టేజ్స్ పన్ ప్రారంభించడానికి అధిక వోల్టేజ్ అవసరమవుతుంది, ఒకసారి అది అయస్సికరణం చెందుతుంది, ప్రై వోల్టేజ్ అవసరం లేనందున, అధిక విద్యుత్ వోల్టేజ్ అవసరమవుతుంది. టూబ్స్ లైట్ చోక్ ఉంటుంది (ఇది ఒక ఇండక్షర్) మరియు ప్లాటర్ ఒక బైమెటలిక్ సిఫ్ట్ డైఫ్యూషన్ సమాంతరంగా కెపాసిటర్లు కలిగి ఉంటుంది.

మీరు ప్లాటర్ ఒలోప్ మారినప్పుడు, పోర్ట్ సర్క్యూట్ మరియు సిర్స్ సర్క్యూట్ ద్వారా ప్రస్తుత ప్రవాహాలను వేడి చేస్తుంది. కొంత సమయం తరువాత (కొన్ని సెకనుల) గ్యాస్ బల్వు తగినంత వేడి మరియు ద్వి-మెటల్ ఎలక్ట్రాషిప్ సిర్స్ సర్క్యూట్లు విచ్చిన్నాం చేస్తుంది. పెట్రోల్ కరెంట్ ఇండోర్ కారణాల పేరేరణలో అధిక వోల్టేజ్ ఇండక్షార్లో తగించడం మరియు తద్వారా వ్యతిరేక ఎలక్ట్రోడ్స్ ఓల్ నియాన్ టూబ్స్ తగించవచ్చు. నియాన్ టూబ్స్ కాంతి ఇవ్వడం గ్రీ ప్రారంభమవుతుంది. అదే సమయంలో ప్లాటర్ ఒల్వు మెరుస్తూ కొనసాగుతుంది మరియు మళ్ళీ మూసివేసే ద్వి-మెటల్ ఎలక్ట్రోడ్లు వేడిగా ఉంచుతుంది. నియాన్ గొట్టం యొక్క ప్రారంభం శుభ్రంగా తేదా కొన్ని ప్రయత్నాలు (మినుకుమినుకుమనే) ద్వారా కావచ్చు. ఇది గర్భించేటప్పుడు మెరుస్తున్నప్పుడు ఇంధనం నియాన్ టూబ్స్ వోల్టేజ్లు పరిమితం చేస్తుంది. 50v.

EMI అణచివేతకు (కెపాసిటర్) అధిక-ఫీరీక్స్ నేనీ కలిగి ఉంటుంది మరియు హామిక్రాంగ్ ధ్వనిని తగిస్తుంది. మేము కెపాసిటర్ ప్రై ఫీరీక్స్ నేనీ కొసం పోర్ట్

సర్క్యూట్టా వ్యవహరించే కాపాసిటర్ విభాగంలో నేర్చుకుంటాము. ఇది సాధారణంగా అతి తక్కువ విలువ - ఎక్కడో మధ్యలో మీ ప్రత్యేక ప్లాటర్సు రూపొందించినవాటిపై ఆధారపడి ఉంటుంది.

2. APPLICATION AS Filters: Inductors are used extensively with capacitor and resistors to create filters for analog circuits and in signal processing. Alone, an inductor functions as a low-pass filter, since the impedance of an inductor increases as the frequency of a signal increases. When combined with a capacitor, whose impedance decreases as the frequency of a signal increases, a notched filter can be made that only allows a certain frequency range to pass through. By

combining capacitors, inductors, and resistors in a number of ways advanced filter topologies can be created for any number of applications. Filters are used in most electronics, although capacitors are often used rather than inductors when possible since they are smaller and cheaper.

వడపోత AS వడపోతలు: అనలాగ్ సర్క్యూట్లకు మరియు సిగ్నల్ పోర్సెసింగ్ కోసం ఫిల్టర్లను సృష్టించడానికి కంటిపాపకుడు మరియు రెసిష్టర్లో ఇండక్షన్ విస్తృతంగా ఉపయోగిస్తారు. ఒంటరిగా, తక్కువ-వడపోత వడపోత వలె ఒక ఇండక్షరు పని చేస్తుంది, ఎందుకంటే సిగ్నల్ పెరుగుదల యొక్క పొనఃపున్యం లాగా ఇన్పుట్లయి యొక్క పెరగడం పెరుగుతుంది. ఒక కెపాసిటర్ కలిపి ఉన్నప్పుడు, సిగ్నల్ ఇమ్ లీజూ యొక్క పొనఃపున్యంగా తగ్గిపోతున్నప్పుడు, ఒక గీసిన ఫిల్టర్ ని ఒక నిర్దిష్ట ఫోర్కెస్ట్ క్రేటివ్ మార్కెట్ ముత్తిస్తుంది. ద్వారా

3. As sensors in Traffic light controllers: Inductors can be used to sense magnetic fields or the presence of magnetically permeable material from a distance. Inductive sensors are used at nearly every intersection with a traffic light to detect the amount of traffic and adjust the signal accordingly.

ఏవైనా అనువర్తనాల కోసం అధునాతన ఫిల్టర్ టోపోలాజీలను సృష్టించవచ్చు అనేక మార్గాల్లో కెపాసిటర్లు, ఇండక్షర్లు మరియు రెసిష్టర్లు కలపడం. వడపోతలు చాలా ఎలక్ట్రానిక్స్ వాడతారు, అయినప్పటికీ కెపాసిటర్లు తరచుగా చిన్న మరియు చౌక్కెనవి అయినప్పటి నుండి వీలైనప్పుడు ఇండక్షార్లు కంటే ఉపయోగించబడతాయి.

4. **As Transformers:** Combining inductors that have a shared magnetic path will form a transformer. The transformer is a fundamental component of national electrical grids and found in many power supplies as well to increase or decrease voltages to a desired level. Since magnetic fields are created by a change in current, the faster the current changes (increase in frequency) the more effective a transformer operates. Of course, as the frequency of the input increases, the impedance of the inductor begins to limit the effectiveness of a transformer. Practically inductance based transformers are limited to the 10s of kHz, usually lower. The benefit of a higher operating frequency is a smaller and lighter weight transformer can be used to deliver the same load.

5. **టీరాఫిక్ లైట్ కంటరోలర్లో సెనార్స్:** ఇంచేక్సర్స్ ను అయస్కాంత క్షేత్రాలు లేదా అయస్కాంత క్షేత్రాలు దూరం నుండి గ్రహించగలవు. పేరేరక సెనార్స్ టీరాఫిక్ పరిమాణాన్ని గుర్తించడానికి మరియు దానికి అనుగుణంగా సర్పుబాటు చేయడానికి ఒక టీరాఫిక్ లైట్ దాదాపు ప్రతి కూడలిలో ఉపయోగించబడతాయి.

6. **Motors:** Normally inductors are in a fixed position and not allowed to move to align themselves with any nearby magnetic field. Inductive motor leverage the magnetic force applied to inductors to turn electrical energy in to mechanical energy. Inductive motors are designed so that a rotating magnetic field is created in time with an AC input. Since the speed of rotation is controlled by the input frequency, induction motors are often used in fixed speed applications that can be powered directly from 50/60hz mains power. The biggest advantage of inductive motors over other designs is that no electrical contact is required between the rotor and the motor which makes inductive motors very robust and reliable.

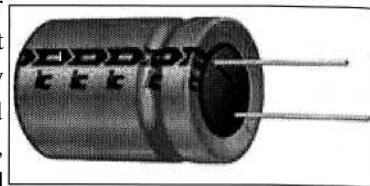
7. 6. మోటార్స్: సాధారణంగా ఇండక్షన్ స్పిరమైన ప్లానాల్ ఉంటాయి మరియు సమీపంలోని అయస్కాంత క్షేత్రంతో తమను తాము సమతేఖనం చేయడానికి అనుమతించవ. విద్యుత్ శక్తిని యాంత్రిక శక్తికి మార్చడానికి పేరేపుకులకు అనువర్తిస్తున్న మాగ్నెటిక్ శక్తి పేరేపించే మోటార్ పరపతి. ఒక ఇన్సుల్ట్ ఒక బ్రఘమణ అయస్కాంత క్షేత్రాన్ని సృష్టించే విధంగా

వీరేరకమయిన మోటార్లు రూపొందించబడ్డాయి. భ్రమణ వేగం ఇన్మాట్ ఫీరీక్వెన్సీ ద్వారా నియంత్రించబడుతుంది కాబట్టి, ఇండక్షన్ మోటర్స్ తరచూ ప్రీరమైన వేగం అనువర్తనాల్లో ఉపయోగించబడతాయి, ఇవి 50 / 60hz మెయిన్స్ శక్తి నుండి నేరుగా శక్తిని పొందుతాయి. ఇతర నమూనాలపై వీరేరక మోటర్స్ యొక్క అతి పెద్ద ప్రయోజనం ఎమిటంచే, రోటర్ మరియు మోటారు మధ్య వీరేరణాత్మక మోటార్లు చాలా బలంగా మరియు విశ్వసనీయంగా ఉండటనికి విద్యుత్ సంబంధం అవసరం లేదు.

8. **Energy Storage:** Like capacitors, inductors can be used for energy storage. Unlike capacitors, inductors have a severe limitation on how long they can store energy since the energy is stored in a magnetic field which collapses quickly once power is removed. The main use for inductors as energy storage is in switch-mode power supplies, like the power supply in a PC. In the simpler, non-isolated switchmode power supplies, a single inductor is used in place of transformer and energy storage component. In these circuits, the ratio of the time the inductor is powered to the time it is unpowered determines the input to output voltage ratio.

శక్తి నిల్వ: కెపాసిటర్లు వలె, విద్యుత్తు నిల్వ కోసం ఇండక్షన్లు ఉపయోగించవచ్చు. కెపాసిటర్లు కావుండా, శక్తిని అయస్కాంత క్షేత్రంలో నిల్వ చేయటం వలన శక్తిని ఎంతకాలం ఉంచుతుంది అనేదానిపై ఇండక్షన్ తీవ్ర పరిమితిని కలిగి ఉంటాయి. శక్తి నిల్వగా వీరేరేపకులకు ప్రధాన ఉపయోగం ఒక PC లో విద్యుత్ సరఫరా వంటి స్వీచ్ మోడ్స్ povJ * 8r సరఫరాలో ఉంటుంది. సరళమైన, ఐసోలేచెడ్ స్వీచ్స్ విద్యుత్ సరఫరాలలో, టీరానామ్మర్గుర్ మరియు శక్తి నిల్వ భాగంలో ప్లానంలో ఒక ఇండక్షన్ రును ఉపయోగిస్తారు. ఈ సర్క్యూట్లలో, ఇంధన నిష్పత్తిని అవుట్టుప్పు చేయాల్సిన సమయము నిష్పక్కి కమైన సమయము యొక్క నిష్పత్తిని శక్తిని పెంచుతుంది.

Capacitors


TYPES OF CAPACITORS, SPECIFICATIONS AND APPLICATIONS

INTRODUCTION TO CAPACITORS

Just like the Resistor, the Capacitor, sometimes referred to as a Condenser, is a simple passive device that is used to “store electricity”. The capacitor is a component which has the ability or “capacity” to store energy in the form of an electrical charge producing a potential difference (Static Voltage) across its plates, much like a small rechargeable battery.

There are many different kinds of capacitors available from very small capacitor beads used in resonance circuits to large power factor correction capacitors, but they all do the same thing, they store charge.

In its basic form, a Capacitor consists of two or more parallel conductive (metal) plates which are not connected or touching each other, but are electrically separated either by air or by some form of a good insulating material such as waxed paper, mica, ceramic, plastic or some form of a liquid gel as used in electrolytic capacitors. The insulating layer between a capacitors plates is commonly called the Dielectric.

A Typical Capacitor

Due to this insulating layer, DC current can not flow through the capacitor as it blocks it allowing instead a voltage to be present across the plates in the form of an electrical charge.

The conductive metal plates of a capacitor can be either square, circular or rectangular, or they can be of a cylindrical or spherical shape with the general shape, size and construction of a parallel plate capacitor depending on its application and voltage rating.

When used in a direct current or DC circuit, a capacitor charges up to its supply voltage. In this circuit, the flow of current through it because the dielectric of a capacitor is non-conductive and basically an insulator. However, when a

capacitor is connected to an alternating current or AC circuit, the flow of the current appears to pass straight through the capacitor with little or no resistance.

There are two types of electrical charge, positive charge in the form of Protons and negative charge in the form of Electrons. When a DC voltage is placed across a capacitor, the positive (+ve) charge quickly accumulates on one plate while a corresponding negative (-ve) charge accumulates on the other plate. For every particle of +ve charge that arrives at one plate a charge of the same sign will depart from the -ve plate.

Then the plates remain charge neutral and a potential difference due to this charge is established between the two plates. Once the capacitor reaches its steady state condition an electrical current is unable to flow through the capacitor itself and around the circuit due to the insulating properties of the dielectric used to separate the plates.

s

The flow of electrons onto the plates is known as the capacitor's **Charging Current** which

continues to flow until the voltage across both plates (and hence the capacitor) is equal to the applied voltage V_c . At this point the capacitor is said to be “fully charged” with electrons. The strength or rate of this charging current is at its maximum value when the plates are fully discharged (initial condition) and slowly reduces in value to zero as the plates charge up to a potential difference across the capacitors plates equal to the source voltage.

The amount of potential difference present across the capacitor depends upon how much charge was deposited onto the plates by the work being done by the source voltage and also by how much capacitance the capacitor has and this is illustrated below.

జలాశయం వలె, కొపాసిటర్, కొన్సిస్టర్ ఒక కంటెన్స్‌బా సూచిస్టారు, ఇది "విద్యుత్తు నిల్వ చేయడానికి" ఉపయోగించే సాధారణ నిప్పికిలు పరికరం. కెపాసిటర్, ఒక చిన్న రీచార్డిబుల్ బ్యాటరీ లాంటి దాని ప్లెట్లలో ఒక సంభావ్య లేదా (ప్లాటిక్ వోల్టేజ్) ఉత్పత్తి చేసే విద్యుత్ చార్జ్ రూపంలో శక్కిని నిల్వ చేసే సామర్ధ్యం లేదా సామర్ధ్యాన్ని కలిగి ఉంటుంది.

ప్రతిధ్వని సర్క్యూట్లలో ప్రతిబింబం సర్క్యూట్లలో ఉపయోగించిన చాలా చిన్న కెపాసిటర్ పూసల నుండి అనేక రకాలైన కెపాసిటర్లు అందుబాటులో ఉన్నాయి, కానీ అవి అన్నింటికీ చేస్తాయి, అవి చార్జ్ నిల్వ చేస్తాయి.

దాని ప్రాథమిక రూపంలో, ఒక కెపాసిటర్ రెండు లేదా అంతకంచే ఎక్కువ సమాంతర వాహక (మెటల్) పలకలను కలిగి ఉంటుంది, ఇవి ఒకదానితో ఒకటి కనెక్ట్ చేయబడవ లేదా తాకడంకాదు, కానీ వాయువు ద్వారా లేదా వార్క్‌స్టాటిస్ కాగితం, మైక్రోఫిల్మ్, ప్లాష్టిక్ లేదా ఎలక్ట్రానిక్ కెపాసిటర్లలో ఉపయోగించే ద్రవ జెల్ యొక్క కొన్సిస్టర్ రూపాలు. కెపాసిటర్లు ప్లెట్లు మధ్య నిరోధక పారను సాధారణంగా డిలోక్స్ అని పిలుస్తారు.

ఈ ఇన్సులేటింగ్ లేయర్ కారణంగా, DC విద్యుత్తును కెపాసిఫెర్ ద్వారా ప్రవహించలేదు, ఎందుకంచే అది ఒక విద్యుత్ చార్జ్ రూపంలో ప్లెట్లు అంతటా ఉండటానికి ఒదులుగా ఒక వోల్టేజ్‌చైమ్ అనుమతిస్తుంది.

ఒక కెపాసిటర్ యొక్క వాహక మెటల్ ప్లెట్లు చదరపు, వృత్తాకార లేదా దీర్ఘచతురస్రాకారంగా ఉండవచ్చు, లేదా వాటి అప్లికేషన్ మరియు వోల్టేజ్ రేటింగ్ అధారంగా ఒక సమాంతర ప్లెట్ కెపాసిటర్ యొక్క సాధారణ ఆకారం, పరిమాణం మరియు నిర్మాణంతో స్ఫూషాకార లేదా గోళాకార ఆకారం ఉంటుంది.

ప్రత్యేక కరంట్ లేదా DC సర్క్యూట్ ఉపయోగించినప్పుడు, ఒక కెపాసిటర్ దాని సరఫరా వోల్టేజ్ ఇన్నెడుకై దానిపై ఉన్న ప్రవాహంపై చార్ట్ చేస్తున్నప్పుడు దాని కెపాసిటర్ యొక్క దీలెక్ట్రిక్ కాని లాంట్రివ్ మరియు వీరాధమికంగా ఒక అవాహకం. అయితే, ఎప్పుడు ఒక కెపాసిటర్ ఒక ప్రత్యేక్ మాన్య ప్రవాహం లేదా AC సర్క్యూట్టుకై అనుసంధానించబడి ఉంది, ప్రస్తుత ప్రవాహం కెపాసిటర్ ద్వారా నేరుగా లేదా తక్కువ సంబ్యులో నిరోధకతతో నేరుగా పాస్ కనిపిస్తుంది.

ఎలక్ట్రాన్ రూపంలో రెండు రకాల విద్యుత్ చార్ట్, వీరోటాన్స్ రూపంలో ధనాత్మక చార్ట్ మరియు ప్రతికూల చార్ట్ ఉన్నాయి. ఒక DC వోల్టేజ్ ఒక కెపాసిటర్ అంతటా ఉంచినప్పుడు, సానుకూల (+) చార్ట్ త్వరగా ఒక ఫ్లేచ్చ్యూ కూడుతుంది, అదే ప్రతికూల (-వ) చార్ట్ ఇతర ఫ్లేచ్చ్యూ కూడుతుంది. ప్రతి కణాల కోసం + ఒక ఫ్లేట్ వద్ద వచ్చే అదే చార్టులో వచ్చే చార్ట్ -వెట్ ఫ్లేట్ నుండి బయలుదేరుతుంది.

అప్పుడు ఫ్లేట్లు తటప్పంగా ఉంటాయి మరియు ఈ చార్ట్ కారణంగా రెండు పలకల మధ్య ఏర్పడిన సంభావ్య వ్యత్యాసం ఉంటుంది. కెపాసిటర్ దాని స్థిరమైన స్థితి పరిష్కారించిని చేరుకున్న తర్వాత, విద్యుత్ ప్రవాహం విద్యుద్వాహకము ద్వారా మరియు ప్రవాహం చుట్టూ వేరు చేయటానికి విద్యుద్వాహకము యొక్క ఇన్సులేటింగ్ లక్షణాల వలన వలయము ద్వారా ప్రపాస్తుంది. లు

ఫ్లేట్సై ఎలక్ట్రాన్ ప్రవాహస్ని కెపాసిటర్లు చార్టీంగ్ కరంట్ అని పిలుస్తారు, ఇది రెండు పలకల (మరియు అందుకే కెపాసిటర్) అంతటా వోల్టేజ్ అనువర్తిత వోల్టేజ్ DC కు సమానంగా ఉంటుంది. ఈ సమయంలో కెపాసిటర్ ఎలక్ట్రాన్తో "పూర్తిగా చార్ట్ చేయబడుతుంది" అని చెప్పబడింది. ఈ చార్టీంగ్ కరంటు యొక్క బలం లేదా రేటు పలకలు పూర్తిపూయిలో విడుదల చేయబడినప్పుడు (గరిష్ట స్థితి) గరిష్ట విలువ వద్ద ఉంటుంది మరియు మూలం వోల్టేజ్సు సమానమైన కెపాసిటర్లు ఫ్లేట్సై పలకలు చార్ట్ చేస్తాయి కాబట్టి నెమ్మిదిగా విలువను తగ్గిస్తాయి.

కెపాసిటర్ అంతటా ఉన్న సంభావ్య వ్యత్యాసాన్ని మూలం వోల్టేజ్ చేత చేయబడిన పని ద్వారా ఫ్లేట్సై ఎంత నిక్షేపణ జరుపబడుతుందో మరియు కెపాసిటర్ ఎంత పాదుపుగా ఉంది మరియు ఇది కీరింద వివరించబడింది ఎంత ఆధారపడి ఉంటుంది.

Capacitor Construction

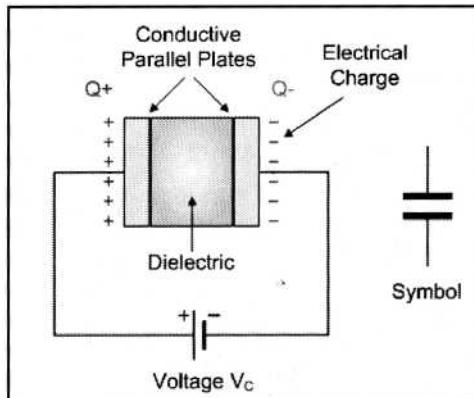


Figure 5.1: Construction of a Capacitor

The parallel plate capacitor is the simplest form of capacitor. It can be constructed using two metal or metallised foil plates at a distance parallel to each other, with its capacitance value being fixed by the surface area of the plates.

and the distance of separation between them. Altering any two of these values alters the value of its capacitance and this forms the basis of operation of the variable capacitors.

Also, because capacitors store the energy of the electrons in the form of an electrical charge on the plates the larger the plates and/or smaller their separation the greater will be the charge that the capacitor holds for any given voltage across its plates. In other words, larger plates, smaller distance, more capacitance.

By applying a voltage to a capacitor and measuring the charge on the plates, the ratio of the charge Q to the voltage V will give the capacitance value of the capacitor and is therefore given as: $C = Q/V$ this equation can also be re-arranged to give the more familiar formula for the quantity of charge on the plates as: $Q = C \times V$

Although we have said that the charge is stored on the plates of a capacitor, it is more correct to say that the energy within the charge is stored in an “electrostatic field” between the two plates. When an electric current flows into the capacitor, charging it up, the electrostatic field becomes more stronger as it stores more energy. Likewise, as the current flows out of the capacitor, discharging it, the potential difference between the two plates decreases and the electrostatic field decreases as the energy moves out of the plates.

The property of a capacitor to store charge on its plates in the form of an electrostatic field is called the **Capacitance** of the capacitor. Not only that, but capacitance is also the property of a capacitor which resists the change of voltage across it.

సమాంతర ఫ్లైట్ కపాసిటర్ అనేది కపాసిటర్ యొక్క సరళమైన రూపం. ఇది రెండు మెటల్ లేదా మెటాలిఫ్లైట్ రేకు ఫ్లైట్లు ఒకదానికొకటి దూరంతో సమాంతరంగా నిర్మించగలవు, లార్ కాల్స్ లో లిట్ కాయిక్సటాన్స్ విలువ, ఉపరితల వైశాల్యం $< d$ లంఫ్రెంచ్ ఫ్లైట్ 'ద్వారా ప్రింట్ రచబడుతుంది.

మరియు వాటి మధ్య విభజన దూరం. ఈ విలువల్లో ఏవైనా రెండింటని మార్చడం దాని కెపాసిచెన్ యొక్క విలువను మార్చివేస్తుంది మరియు ఇది వేరియబుల్ కెపాసిటర్లు యొక్క అపరేషన్ యొక్క ఆధారం.

అలాగే, కెపాసిటర్లు ఎల్క్రోన్ యొక్క శక్తిని ఎల్క్రోన్ రూపంలో ఫ్లెట్లు పెద్ద పలకలు మరియు / లేదా చిన్న వాటి విభజన రూపంలో నిల్వ చేస్తాయి ఎందుకంటే కెపాసిటర్ దాని ఫ్లెట్లపై ఏవైనా వోల్టేజ్ కోసం కలిగి ఉన్న చార్ట్ ఎక్కువగా ఉంటుంది. ఇతర మాటలలో, పెద్ద ఫ్లెట్లు, చిన్న దూరం, మరింత కెపాసిచెన్న.

ఒక కెపాసిటరు ఒక వోల్టేజ్ ను దరఖాస్తు మరియు ఫ్లెట్లపై చార్పు కొలిచేటప్పుడు, వోల్టేజ్ V కు చార్ట్ Q కి నిష్పత్తి కెపాసిటర్ యొక్క కెపాసిచెన్న విలువను ఇస్తుంది మరియు అందువల్ల $C = Q / V$ ఈ సమీకరణం కూడా $Q = C \times V$: ఫ్లెట్లపై చార్ట్ యొక్క పరిమాణానికి మరింత సుపరిచితుమైన పార్చులాను ఇవ్వాలని నిర్ణయించారు చార్ట్ ఒక కెపాసిటర్ యొక్క ఫ్లెట్లపై నిల్వ చేయబడిందని మేము చెప్పినప్పటికీ, చార్ట్ లోపల శక్తి రెండు ఫ్లెట్ల మధ్య ఒక "ఎల్క్రోష్టిష్టిఫీల్డ్" లో నిల్వ చేయబడిందని చెప్పడం మరింత సరైనది. విద్యుత్ ప్రవాహం కెపాసిటర్లోకి ప్రవాహిస్తున్నప్పుడు, దానిని చార్టింగ్ చేసినప్పుడు, మరింత శక్తిని నిల్వచేసే విధంగా ఎల్క్రోష్టాటిక్ ఫీల్డ్ మరింత బలపడుతుంది. అదే విధంగా, కెపాసిటర్ నుండి ప్రస్తుత ప్రవాహాలు, దానిని డిచార్ట్ చేయడంతో, రెండు పలకల మధ్య సంభావ్య వ్యత్యాసం తగ్గిపోతుంది మరియు శక్తిని ఫ్లెట్ల నుండి కదులుతున్నప్పుడు ఎల్క్రోష్టిక్ క్షేత్రం తగ్గుతుంది. ఎల్క్రోమాటిక్ క్షేత్రం యొక్క రూపంలో దాని ఫ్లెట్లపై చార్పు నిల్వ చేయడానికి ఒక కెపాసిటర్ యొక్క ఆస్తిని కెపాసిటర్ యొక్క కాపికెట్ అని పిలుస్తారు. అది మాత్రమే కాదు, కానీ అది కెపాసిటర్ యొక్క కెపాసిచెంట్ కూడా దానిలో వోల్టేజ్ మార్పును నిరోధిస్తుంది.

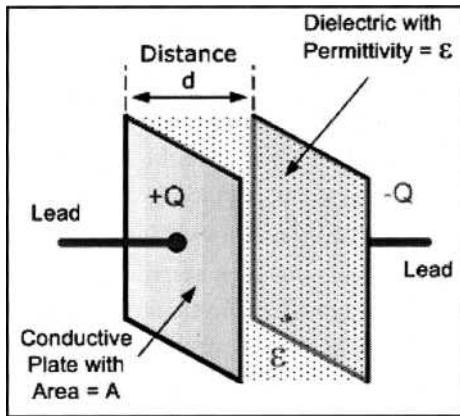
The Capacitance of a Capacitor

Capacitance is the electrical property of a capacitor and is the measure of a capacitor's ability to store an electrical charge onto its two plates with the unit of capacitance being the **Farad** (abbreviated to F) named after the British physicist Michael Faraday.

Capacitance is defined as being that a capacitor has the capacitance of One Farad when a charge of One Coulomb is stored on the plates by a voltage of One volt. (Capacitance, C is

always positive and has no negative units. However, the Farad is a very large unit of measurement to use on its own so sub-multiples of the Farad are generally used such as micro-farads, nano-farads and pico-farads, for example. **STANDARD UNITS OF CAPACITANCE**

- Microfarad (pF) $1\text{pF} = 1/1,000,000 = 0.000001 = 10^{-6} \text{ F}$
- Nanofarad (nF) $1\text{nF} = 1/1,000,000,000 = 0.000000001 = 10^{-9} \text{ F}$
- Picofarad (pF) $1\text{pF} = 1/1,000,000,000,000 = 0.000000000001 = 10^{-12} \text{ F}$


కెపాసిటెన్స్ అనేది ఒక కెపాసిటర్ యొక్క ఎలక్ట్రిక్ ఆస్తి మరియు ఇది కెపాసిటెన్స్ యూనిట్ తో బెరిటీష్ భోతిక శాస్త్రవేత్త మైఫోల్ ఫెరడ్ అనే పేరు గల ఫరాడ్ (F కు సంక్లిష్టముగా) ఉండటంతో దాని యొక్క రెండు ఫ్లెట్లలో ఒక విద్యుత్ చార్ట్ నిలవ్ చేయడానికి ఒక కెపాసిటర్ సామర్థ్యం యొక్క కొలత.

- ఒక వోల్ట్ యొక్క ఒక వోల్టేజ్ ద్వారా ఒక కులోంబ్ యొక్క చార్ట్ ఫ్లెట్లపై నిలవ్ చేసినప్పుడు ఒక కెపాసిటర్ ఒక ఫరాడ్ యొక్క కెపాసిటెన్స్ కలిగి ఉండటాన్ని కెపాసిటెన్స్ నిర్వచించింది. (కాపాసిటెన్స్, సి ఎల్లప్పుడూ అనుకూలమైనది మరియు ప్రతికూల విభాగాలను కలిగి ఉండదు, అయినప్పటికీ, ఫరాడ్ దాని సాంత ఉపయోగానికి దాలా పెద్ద కొలత కొలమానంగా ఉంది కాబట్టి ఫరద్ యొక్క ఉప-గుణకాలు సామాన్యంగా మైక్రో-ఫారాడ్స్, నానో-ఫారాడ్స్ మరియు పిక్ ఉదాహరణకు, గంభీరంగా ఉన్న పీరామాణిక యూనిట్లు
-

(Capacitance of a Parallel Plate Capacitor

the capacitance of a parallel plate capacitor is proportional to the area, A of the plates and inversely proportional to their distance or separation, d (i.e. the dielectric thickness) giving us a value for capacitance of $C = k(A/d)$ where in a vacuum the value of the constant k is $8.84 \times 10^{-12} \text{ F/m}$ or $1/4.71.9 \times 10^9$, which is the permittivity of free space. Generally, the conductive plates of a capacitor are separated by air or some kind of insulating material or gel rather than the vacuum of free space.

�క సమాంతర ఫ్లెట్ కెపాసిటర్ యొక్క కెపాసిటెంట్, వేల్స్ యొక్క A మరియు దాని దూరం లేదా విభజనకు d, (అంచే విద్యుద్వాహకత మందం) మాకు $C = k(A/d)$ యొక్క కెపాసిటెన్స్ విలువను ఇస్తుంది. నిరంతరం k యొక్క విలువను $8.84 \times 10^{-12} \text{ F/m}$ లేదా $1/4.71.9 \times 10^9$, ఇది ఖాళీ ష్టలం యొక్క permittivity. సామాన్యంగా, ఒక కెపాసిటర్ యొక్క వాహక ఫ్లెట్లు గాలి లేదా ఖాళీ ష్టలం యొక్క శూన్య కాకుండా పదార్థం లేదా జెల్ యొక్క కొన్ని రకమైన వేరు చేయబడతాయి.

Figure 5.2: Construction of a parallel plate capacitor The Dielectric of a Capacitor

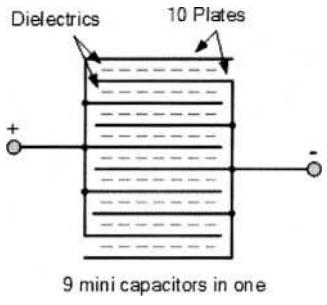
As well as the overall size of the conductive plates and their distance or spacing apart from each other, another factor which affects the overall capacitance of the device is the type of dielectric material being used.

In other words the “Permittivity” (ϵ) of the dielectric. The conductive plates are generally made of a metal foil or a metal film but the dielectric material is an insulator.

The various insulating materials used as the dielectric in a capacitor differ in their ability to block or pass an electrical charge.

This dielectric material can be made from a number of insulating materials or combinations of these materials with the most common types used being: air, paper, polyester, polypropylene, Mylar, ceramic, glass, oil, or a variety of other materials.

The factor by which the dielectric material, or insulator, increases the capacitance of the capacitor compared to air is known as the Dielectric Constant, k and a dielectric material with a high dielectric constant is a better insulator than a dielectric material with a lower dielectric constant. Dielectric constant is a dimensionless quantity since it is relative to free space.


The actual permittivity or “complex permittivity” of the dielectric material between the plates is then the product of the permittivity of free space (ϵ_0) and the relative permittivity (ϵ_r) of the material being used as the dielectric and is given as:

One method used to increase the overall capacitance of a capacitor is to “interleav” more plates together within a single capacitor body. Instead of just one set of parallel plates, a capacitor can have many individual plates connected together thereby

increasing the area, A of the plate. For example, a capacitor with 10 interleaved plates would produce 9 (10 - 1) mini capacitors with an overall capacitance nine times that of a single parallel plate.

Modern capacitors can be classified according to the characteristics and properties of their insulating dielectric:

- Low Loss, High Stability such as Mica, Low-K Ceramic, Polystyrene.
- Medium Loss, Medium Stability such as Paper, Plastic, Film, High-K Ceramic.
- Polarized Capacitors such as Electrolytic's, Tantalum's.
- వాహక ఫలకాల యొక్క మొత్తం పరిమాణం మరియు వాటి దూరం లేదా అంతరం వేరుగా ఉండటం వంటివి, పరికరం యొక్క మొత్తం సామర్థ్యంను ప్రభావితం చేసే మరొక కారకం, ఉపయోగించబడుతున్న విద్యుద్వాహక పదార్థం.
- ఇతర మాటలలో విద్యుద్వాహకము యొక్క "పరిక్రమిటీ" (లు). వాహక ఫలకాలు ఆర్కి సాధారణంగా లోహపు రేకు లేదా లోహ చిత్రంగా తయారు చేయబడతాయి, కానీ విద్యున్నిరోధక పదార్థం ఒక అవాహకం.
- ఒక కెపాసిటీర్లో ఊటలక్ష్మికా ఉపయోగించబడే వివిధ ఇన్సులేటింగ్ పదార్థాలు విద్యుత్ చార్ట్లు అధ్యకునేందుకు లేదా పాస్ చేసే సామర్థ్యానికి భిన్నంగా ఉంటాయి.
- గాలి, కాగితం, పాలిష్టర్, పాలీపోష్టిల్స్, మైలార్, సిరామిక్, గ్లూస్, ఆయల్, లేదా అనేక రకాల ఇతర పదార్థాల ద్వారా ఈ ఊటలక్ష్మికా పదార్థాలను అనేక పదార్థాల ఇన్సులేటింగ్ పదార్థాలు లేదా సమ్మేళనాలను తయారు చేయవచ్చు.
- ఊటలక్ష్మికా పదార్థం లేదా ఇన్సులేటర్ గాలిని పోలిస్టే కెపాసిటరును పెంచుతుంది. ఊటలక్ష్మికానాసింట్, కె అని పిలుస్తారు మరియు అధిక విద్యున్నిరోధక షిరాంకంతో ఉన్న విద్యుద్వాహక పదార్థం తక్కువ విద్యుద్వాహక షిరాంకంతో విద్యుద్వాహక పదార్థం కంచే మెరుగైన అవాహకం. . ఊటలక్ష్మికా షిరాంకం పరిమాణం లేని పరిమాణంగా ఉంటుంది, అది ఖాళీ షులనికి సంబంధించింది.
- శైల్ప మర్యాద విద్యున్నిరోధక పదార్థం యొక్క అసలు పరిక్రమిటీ లేదా "క్లిష్ట పరిక్రమిటీ" అప్పుడు ఖాళీ షులం (కి క్ర) యొక్క పరిక్రమిటీ మరియు విద్యుద్వాహకతగా ఉపయోగించే పదార్థం యొక్క సంబంధిత పరిక్రమిటీ (ఎర్) యొక్క ఉత్పత్తి మరియు ఇస్తారు:

- ఒక కెపాసిటర్ యొక్క మొత్తం కెపాసిచెన్స్ ను పెంచుటకు ఒక పద్ధతి ఒక సింగిల్ కెపాసిటర్ బాడీ లోపల మరింత పలకలను "జంటల్ఫీవ్వర్" అని పిలుస్తారు. ఒకే సమాంతర పలకాలకు బదులుగా, ఒక కెపాసిటర్ అనేక వ్యక్తిగత ప్లెట్లు తద్వారా కలిసి కనెక్ట్ చేయగలదు
- ఏరాంతం పెరుగుతున్న, ప్లెట్ యొక్క A. ఉదాహరణకు, 10 జంటల్ఫీవ్ ప్లెట్లు కలిగిన ఒక కెపాసిటర్ 9 (10 - 1) మినీ కెపాసిటర్లను ఒక సమాంతర ప్లెట్ యొక్క మొత్తం కెపాసిచెన్స్ తోమ్మిది సార్లు ఉత్పత్తి చేస్తుంది.
- ఆధునిక కెపాసిటర్లు వాటి ఇన్సులేటింగ్ టీఎల్క్రిక్ లక్షణాలు మరియు లక్షణాలు ప్రకారం వర్ధికరించవచ్చు:

 - తక్కువ నష్టం, మైకో, లో-కే సిరామిక్, పాలీషైరిన్ వంటి అధిక ప్రిరత్వం.
 - మీడియం నష్టం, పేపర్, ఫ్లాష్మిక్, సినిమా, ప్రో-కే సిరామిక్ వంటి మధ్యష్ట ప్రిరత్వం.
 - ఎల్క్రోలిటిస్, టూంటాలమ్ వంటి ధీరువణ కెపాసిటర్లు.

Voltage Rating of a Capacitor

All capacitors have a maximum voltage rating and when selecting a capacitor consideration must be given to the amount of voltage to be applied across the capacitor. The maximum amount of voltage that can be applied to the capacitor without damage to its dielectric material is generally given in the data sheets as: WV, (working voltage) or as WV DC, (DC working voltage).

If the voltage applied across the capacitor becomes too great, the dielectric will break down (known as electrical breakdown) and arcing will occur between the capacitor plates resulting in a short-circuit. The working voltage of the capacitor depends on the type of dielectric material being used and its thickness.

The DC working voltage of a capacitor is just that, the maximum DC voltage and NOT the maximum AC voltage as a capacitor with a DC voltage rating of 100 volts DC cannot be safely subjected to an alternating voltage of 100 volts. Since an alternating voltage has an r.m.s. value of 100 volts but a peak value of over 141 volts!. Then a capacitor which is required to operate at 100 volts AC should have a Working voltage of at least 200 volts. In practice, a capacitor should be selected so that IN working voltage either DC or AC should be at least 50 percent greater than the highest effective voltage to be applied to it.

Another factor which affects the operation of a capacitor is Dielectric Leakage. Dielectric leakage occurs in a capacitor as the result of an unwanted leakage current which flows through the dielectric material.

Generally, it is assumed that the resistance of the dielectric is extremely high and a good

insulator blocking the flow of DC current through the capacitor (as in a perfect , apacitor) from one plate to the other.

I lowcver, if the dielectric material becomes damaged due excessive voltage or over temperature, the leakage current through the dielectric will become extremely high resulting in a rapid loss of charge on the plates and an overheating of the capacitor •sually resulting in premature failure of the capacitor. then never use a capacitor in a circuit with higher voltages than the capacitor is rated for otherwise it may become hot and explode.

అన్న కెపాసిటర్లు గరిష్ట వోల్టేజ్ రేటింగ్స్ను కలిగి ఉంటాయి మరియు ఒక కెపాసిటర్ పరిశీలనలో కెపాసిటర్లై దరఖాస్తు చేయడానికి వోల్టేజ్ మొత్తం ఇవ్వాలి. విద్యుద్వాహక పదార్థం యొక్క నష్టం లేకుండా కెపాసిటర్కు వర్తించగల గరిష్ట మోతాదు సాధారణంగా డేటా మీటలో: WV, (పని వోల్టేజ్) లేదా WV DC (DC పని వోల్టేజ్) గా ఇవ్వబడుతుంది.

కెపాసిటర్ అంతటా దరఖాస్తు చేసిన వోల్టేజ్ చాలా గొప్పగా మారితే, డీలెక్ట్రిక్ విచ్చిన్నమవుతుంది (ఎలాక్సిక్ల్ బోర్కోన్ అని పిలుస్తారు) మరియు ఒక చిన్న సర్క్యూట్ ఫలితంగా కెపాసిటర్ ఫ్లైట్ మధ్య ఆర్ద్రిషన్ జరుగుతుంది. కెపాసిటర్ పనిచేసే వోల్టేజ్ ఉపయోగించిన విద్యుద్వాహక పదార్థం మరియు దాని మందంపై ఆధారపడి ఉంటుంది.

ఒక కెపాసిటర్ యొక్క DC పని వోల్టేజ్ కేవలం 100 వోల్ట్ DC యొక్క DC వోల్టేజ్ రేటింగ్ ఒక కెపాసిటర్ గరిష్ట DC వోల్టేజ్ మరియు గరిష్ట AC వోల్టేజ్ కాదు, 100 వోల్ట్ ప్రత్యామ్మాయ వోల్టేజ్కు సురక్షితంగా ఉండదు. ఒక ప్రత్యామ్మాయ వోల్టేజ్ r.m.s. 100 వోల్ట్ విలువ కానీ 141 వోల్ట్ పైభాగ విలువ! అప్పుడు 100 వోల్ట్ ఎని వధ్య పనిచేయడానికి అవసరమైన ఒక కెపాసిటర్ కనీసం 200 వోల్ట్ వర్కింగ్ వోల్టేజ్ కలిగి ఉండాలి. ఆచరణలో, ఒక కెపాసిటర్ యొక్క ఎంపిక చేసుకోవాలి, కనుక IIN వోల్టేజ్ పనిచేయడం వలన DC లేదా AC ఉపయోగించడం అత్యంత ప్రభావవంతమైన వోల్టేజ్ కంటే కనీసం 50 శాతం ఎక్కువ ఉండాలి.

కెపాసిటర్ యొక్క పనితీరును ప్రభావితం చేసే మరొక అంశం డీలెక్ట్రిక్ లీకేజీ. విద్యున్నిరోధక పదార్థం ద్వారా ప్రవహించే అవాంచిత లీకేజ్ కరెంట్ ఫలితంగా నేను ఒక కెపాసిటర్ జలేక్కూచ్చిరిక్ లీకేజ్ ఏర్పడుతుంది.

(In general, విద్యుద్యోహకము యొక్క ప్రతిష్ఠితమున చాలా ఎక్కువగా ఉంటుంది మరియు ఒక డబ్బు ప్రవాహాన్ని కెపాసిటర్ (ఒక ఖచ్చితమైన, అపాసిటర్ లాగా) ఒక పలక నుండి మరొక వైపుకు DC ప్రవాహాన్ని అడ్డుకోవటానికి మంచి అవహాకం. తీవ్రమైన పదార్థం అధికమైన వోల్టేజ్ లేదా అధిక పరిమాణ వోల్టేజ్ దెబ్బతినడం వల్ల, తక్కువగా ఉంటే, విద్యుద్యోహకత ద్వారా లీకేజ్ విద్యుత్తు చాలా అధికం అవుతుంది ప్లట్లు మీద వేగంగా నష్టపోతున్నాను మరియు కెపాసిటర్ యొక్క తీవ్రపోయిలో . si niually కెపాసిటర్ యొక్క అకాల ఫ్యాయిల్స్ ఫలితంగా. నేను ఒక కెపాసిటరును ఎన్నడూ ఉపయోగించలేదు కెపాసిటర్ కంటే అధిక ఒల్టేజీలతో ఉన్న సర్క్యూట్ లేకపోతే అది వేడిగా మరియు చేలుడు కావచ్చు.

Capacitors Summary

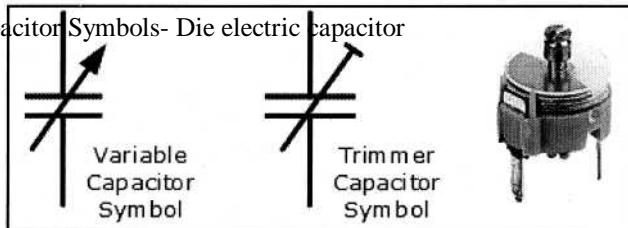
The job of a capacitor is to store charge onto its plates. The amount of electrical charge that a capacitor can store on its plates is known as its **Capacitance** value and depends upon three main factors.

ఒక కెపాసిటర్ పని దాని పలకలపై చార్ట్ నిల్వ ఉంది. ఒక కెపాసిటర్ దాని ప్లట్లపై నిల్వ చేసే విద్యుత్ చార్ట్ యొక్క పరిమాణం దాని కాపాసిటెన్స్ విలువ అని పిలుస్తారు మరియు మూడు ముఖ్య కారకాలపై ఆధారపడి ఉంటుంది.

- **Surface Area** — the surface area, A of the two conductive plates which make up the capacitor, the larger the area the greater the capacitance.
- **Distance** — the distance, d between the two plates, the smaller the distance the greater the capacitance.
- **Dielectric Material** — the type of material which separates the two plates called the “dielectric”, the higher the permittivity of the dielectric the greater the capacitance.

The dielectric of a capacitor is a non-conducting insulating material, such as waxed paper, glass, mica different plastics etc, and provides the following advantages:

- The dielectric constant is the property of the dielectric material and varies from one material to another increasing the capacitance by a factor of k.
- The dielectric provides mechanical support between the two plates allowing the plates to be closer together without touching.
- Permittivity of the dielectric increases the capacitance.
- The dielectric increases the maximum operating voltage compared to air.


Capacitors can be used to block DC current while passing audio signals, pulses, or alternating current, or other time varying wave forms. This ability to block DC currents enables capacitors to be used to smooth the output voltages of power supplies, to remove unwanted spikes from signals that would otherwise tend to cause damage or false triggering of semiconductors or digital components. Capacitors can also be used to adjust the frequency response of an audio circuit, or to couple together separate amplifier stages that must be protected from the transmission of DC current.

At DC a capacitor has infinite impedance (open -circuit), at very high frequencies a capacitor has zero impedance (short-circuit). All capacitors have a maximum working voltage rating, its WV DC so select a capacitor with a rating at least 50% more than the supply voltage.

కెపాసిటర్లు ఆడియో సిగ్నల్స్, పప్పులు లేదా ప్రస్తుత ప్రత్యామ్నాయం, లేదా వేరోక వేర్యేరు వేవ్ రూపాలను దాటినప్పుడు DC కరెంట్ ను నిరోధించటానికి ఉపయోగించవచ్చు. DC ప్రవాహాలను నిరోధించే ఈ సామర్థ్యం కెపాసిటర్లు విద్యుత్తు సరఫరా యొక్క అవటువుట్ వోల్టేజ్సను సున్నితంగా చేయడానికి, సిగ్నల్స్ నుండి అవాంచిత వచ్చే చిక్కులను తీసివేయడానికి ఉపయోగించుకునేందుకు దోహదపరుస్తుంది, ఇది సెమీకండక్షర్స్ లేదా డిజిటల్ భాగాల యొక్క నష్టం లేదా తప్పుడు కారణాన్ని కలిగించవచ్చు. కెపాసిటర్లు కూడా ఆడియో సర్యూట్ యొక్క ఫీర్కెన్సీ స్పందనని సర్పుబాటు చేయడానికి లేదా DC ప్రస్తుత ప్రసారం నుండి తప్పనిసరిగా రక్కించబడే ప్రత్యేక యాంప్లిష్మెంట్ దశలను ఏర్పాటు చేయడానికి ఉపయోగించవచ్చు. DC వద్ద ఒక కెపాసిటర్ అనంతం ఇంపాడెన్స్ (బెన్-సర్యూట్) కలిగి ఉంది, చాలా అధిక పోసంపున్యాల వద్ద ఒక కెపాసిటర్ నున్న ఇంపాడెన్స్ (పొర్చ్ సర్యూట్) ను కలిగి ఉంటుంది. అన్ని కెపాసిటర్లు గరిష్టంగా పనిచేసే వోల్టేజ్ రేటింగ్ కలిగివుంటాయి, దాని WV DC కాబట్టి సరఫరా ఒళ్ళేజి కంచే కనీసం 50% కంచే ఎక్కువ రేటింగ్ కలిగిన కెపాసిటర్లు ఎంచుకోండి.

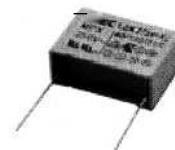
Practical Exercise: Identify different Types of capacitors

Variable Capacitor Symbols- Dielectric capacitor

Continuously variable types AND preset type variable capacitors are available called Trimmers. These are generally small devices that can be adjusted or “pre-set” to a particular capacitance value with the aid of a small screwdriver and are available in very small capacitance's of 500pF or less and are non-polarized.

The film and foil types of capacitors are made from long thin strips of thin metal foil with the dielectric material sandwiched together which are wound into a tight roll and then sealed in paper or metal tubes.

These film types require a much thicker dielectric film to reduce the risk of tears or punctures in the film, and is therefore more suited to lower capacitance values and larger case sizes.


Metalised foil capacitors have the conductive film metalised sprayed directly onto each side of the dielectric which gives the capacitor self-healing properties and can therefore use much thinner dielectric films. This allows for higher capacitance values and smaller case sizes for a given capacitance. Film and foil capacitors are generally used for higher power and more precise applications.

Ceramic Capacitors or Disc Capacitors as they are generally called, are made by coating two sides of a small porcelain or ceramic disc with silver and are then stacked together to make a capacitor. For very low capacitance values a single ceramic disc of about 3-6mm is used. Ceramic capacitors have a high dielectric constant (High-K) and are available so that relatively high capacitance's can be obtained in a small physical size.

They exhibit large non-linear changes in capacitance against temperature and as a result are used as de-coupling or by-pass

capacitors as they are also non-polarized devices. Ceramic capacitors have values ranging from a few picofarads to one or two microfarads, (pF) but their voltage ratings are generally quite low.

Ceramic types of capacitors generally have a 3-digit code printed

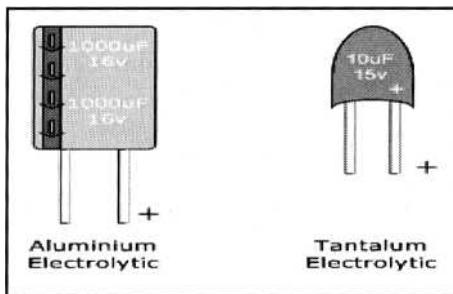
Film Capacitor

Ceramic Capacitor

Electrolytic Capacitors are generally used when very large capacitance values are required. Here instead of using a very thin metallic film layer for one of the electrodes, a semi-liquid electrolyte solution in the form of a jelly or paste is used which serves as the second electrode (usually the cathode).

The majority of electrolytic types of capacitors are **Polarised**, that is the DC voltage applied to the capacitor terminals must be of the correct polarity, i.e. positive to the positive terminal and negative to the negative terminal as an incorrect polarisation will break down the insulating oxide layer and permanent damage may result.

All polarised electrolytic capacitors have their polarity clearly marked with a negative sign to indicate the negative terminal and this polarity must be followed.


Electrolytic Capacitors are generally used in DC power supply circuits due to their large capacitance's and small size to help reduce the ripple voltage or for coupling and decoupling applications. One main disadvantage of electrolytic capacitors is their relatively low voltage rating and due to the polarisation of electrolytic capacitors, it follows then that they must not be used on AC supplies. Electrolytic's generally come in two basic forms; Aluminium Electrolytic Capacitors and Tantalum Electrolytic Capacitors.

Electrolytic Capacitor

అన్ని ధీరువణ విద్యుద్వ్యోపణ కెపాసిటర్లు ప్రతికూల చెర్చినల్ని సూచించడానికి ప్రతికూల సంకేతంతో స్వప్తంగా గుర్తించబడి, ఈ ధీరువణాన్ని అనుసరించాలి. విద్యుద్వ్యోపణ కెపాసిటర్లు సాధారణంగా వాడబడతాయి. వారి పెధ్య కెపాసిటర్స్ మరియు చిన్న పరిమాణాల కారణంగా DC విద్యుత్ సరఫరా సర్వ్యాట్లలో టీపుల్ వోల్టేజ్సు తగ్గించడం లేదా అఫీకేషన్లు కలుపుతూ మరియు డీకూపింగ్ చేయడం కోసం సహాయపడతాయి. ఎలెక్ట్రోలైటిక్ కెపాసిటర్లలో ఒక ప్రధాన ప్రతికూలత వాటి తక్కువ ఒల్టేజి రేటింగ్ మరియు విద్యుద్వ్యోపణ కెపాసిటర్ల ధీరువణత కారణంగా, అని AC సరఫరాపై ఉపయోగించరాదు. విద్యుద్వ్యోపణ సాధారణంగా రెండు పేరాథమిక రూపాల్లో వస్తుంది; అల్యూమినియం ఎలెక్ట్రోలైటిక్ కెపాసిటర్ల మరియు టూంటాలమ్ ఎల్క్రోలిటిక్ కెపాసిటర్స్.

Aluminium & Tantalum Electrolytic Capacitor

APPLICATION OF CAPACITORS

1. **Filter Applications:** Combined with resistors, capacitors are often used as the main element of frequency selective filters. The available filter designs and topologies are numerous and can be tailored for frequency and performance by selecting the proper component values and quality. Some of the types of filter designs include:

- High Pass Filter (HPF)
- Low Pass Filter (LPF)
- Band Pass Filter (BPF)
- Band Stop Filter (BSF)

1. వద్దపోత అప్లికేషన్స్: రెసిప్రోర్లతో కలిపి, కెపాసిటర్లు తరచు ఫీర్కెన్సీను సెలెక్షన్ ఫిల్టర్ ప్రధాన మూలకాన్ని ఉపయోగిస్తారు. అందుబాటులో ఉన్న వద్దపోత నమూనాలు AMI టోపోలాజీలు చాలా ఉన్నాయి మరియు సరైన భాగం విలువలు మరియు నాణ్యతను ఎంచుకోవడం ద్వారా ఫీర్కెన్సీను మరియు పనితీరుకు అనుగుణంగా ఉంటాయి. లిలియే డిజెన్సలో కొన్ని:

- Band Stop Filter (BSF)
- Notch Filter
- All Pass Filter
- Equalization Filter

2. **Decoupling/By-Pass Capacitors:** Capacitors play a critical role in the stable operation of digital electronics by protecting sensitive microchips from noise on the power signal which can cause anomalous behaviours. Capacitors used in this application are called decoupling capacitors and should be placed as close as possible to each microchip to be most effective, as all circuit traces act as antennas and will pick up noise from the surrounding environment. Decoupling and bypass capacitors are also used in any area of a circuit to reduce the overall impact of electrical noise.

- Coupling or DC Blocking Capacitors:** Since capacitors have the ability to pass AC signals while blocking DC, they can be used to separate the AC and DC components of a signal. The value of the capacitor does not need to be precise or accurate for coupling, but it should be a high value as the reactance of the capacitor drives the performance in coupling applications.
- Snubber or Transient suppression Capacitors:** In circuits where a high inductance load is driven, such as a motor or transformer, large transient power spikes can occur as the energy stored in the inductive load is suddenly discharged which can damage components and contacts. Applying a capacitor can limit, or snub, the voltage spike across the circuit, making operation safer and the circuit more reliable. In lower power circuits, using a snubbing technique can be used to prevent spikes from creating undesirable radio frequency interference (RFI) which can cause anomalous behaviour in circuits and cause difficulty in gaining product certification and approval.

2. డీకోలింగ్ / బై-పాస్ కెపాసిటర్లు: కెపాసిటర్లు డిజిటల్ ఎలక్ట్రానిక్స్ యొక్క ప్రింట్ ఆపరేషన్లో కీలక పాత్రను పోషిస్తాయి, ఇది అసాధారణమైన ప్రవర్తనలను కలిగించే శక్తి సిగ్నల్లు శబ్దం నుండి సున్నితమైన మైక్రోచిప్సును రక్తిస్తుంది. ఈ అఫైకేషన్ లో ఉపయోగించే కెపాసిటర్లు డీకోలింగ్ కెపాసిటర్లు అని పిలుస్తారు మరియు ప్రతి మైక్రోచిప్సు సాధ్యమైనంత దగ్గరగా సాధ్యమయ్యేలా ఉంచాలి, అన్ని సర్క్యూట్ జాడలు యాంచెనాలుగా పనిచేస్తాయి మరియు చుట్టూప్రక్కల పర్యావరణం నుండి శబ్దాన్ని ఎంచుకుంటాయి. విద్యుత్ శబ్దం యొక్క మొత్తం ప్రభావాన్ని తగ్గించడానికి సర్క్యూట్ యొక్క ఏ ఏరాంతంలోనూ డీకోలింగ్ మరియు బైపాస్ కెపాసిటర్లు కూడా ఉపయోగించబడతాయి.

3. కలుపులు లేదా DC నిరోధకాలు కెపాసిటర్లు: DC ని అడ్డుకునేటప్పుడు AC సిగ్నల్ లను కెపాసిటర్లు కలిగివుండే సామర్థ్యాన్ని కలిగి ఉండటం వలన అవి సిగ్నల్ యొక్క AC మరియు DC భాగాలను వేరు చేయడానికి ఉపయోగించవచ్చు. కెపాసిటర్ యొక్క విలువ కలుపుటకు ఖచ్చితమైనది లేదా ఖచ్చితమైనది కానవసరం లేదు, కానీ కపశైర్ యొక్క రియాక్షన్స్ కదలిక అనువర్తనాలలో పనితీరును నడిపించేటప్పుడు అది అధిక విలువ కలిగి ఉండాలి.

4. స్నూబ్బర్ లేదా టీరాన్యిమెంట్ అణిచివేత కెపాసిటర్లు: మోటారు లేదా టీరాన్యాపర్కర్ వంటి అధిక ఇండక్షన్స్ లోడ్ నడుపుతున్న సర్క్యూట్లలో, ఏరేరక లోడ్లో నిల్వ చేయబడిన శక్తి హతాత్మగా విడిపోతుంది, ఇది భాగాలు మరియు పరిచయాలను దెబ్బతీస్తుంది. ఒక కెపాసిటర్ దరఖాస్తు సర్క్యూట్ అంతటా వోల్టేజ్

సైన్స్ పరిమితం చేయవచ్చు, ఆపరేషన్ సురక్షితమైనది మరియు సర్క్యూట్ మరింత విశ్వసనీయంగా చేస్తుంది. తక్కువ పవర్ సర్క్యూట్లలో, ఒక స్మిభింగ్ పద్ధతిని ఉపయోగించి, అవాంచిత రేటింగ్ ఫీర్కెన్స్ బోక్యూప్ (RFI) ను సృష్టించకుండా కదలికలను నివారించడానికి ఉపయోగించవచ్చు, ఇది సర్క్యూట్లలో అసాధారణ ప్రవర్తనను కలిగిస్తుంది మరియు ఉత్పత్తి ధీరువీకరణ మరియు ఆమోదం పొందడంలో కష్టతరమవుతుంది.

5. Pulsed Power Capacitors: At their most basic, capacitors are effectively tiny batteries and offer unique energy storage capabilities beyond those of chemical reaction batteries. When lots of power is required in a short period of time, large capacitors and banks of capacitors are a superior option for many applications. Capacitor banks are used to store energy for applications such as pulsed hi&grs, radars, particle accelerators, and railguns. A common application of the pulsed power capacitor is in the flash on a disposable camera which is charged up then rapidly discharged through the flash, providing a large pulse of current.

6. Resonant or Tuned Circuit Applications: While resistors, capacitors and Inductors can be used to make filters, certain combinations can also result in resonance amplifying the input signal. These circuits are used to amplify signals at (the resonant frequency, create high voltage from low voltage inputs, as oscillators, .mil as tuned filters. In resonant circuits, care must be taken to select components that can survive die voltages that the components see across them or they will quickly fail

7. Capacitive Sensing Application: Capacitive sensing has recently become a 7- common feature in advanced consumer electronics devices, although capacitive sensors have been used for decades in a variety of applications for position, humidity, fluid level, manufacturing quality control and acceleration. Capacitive sensing works by detecting a change in the capacitance of the local environment through a change in the dielectric, a change in the distance between the plates of

the capacitor, or a change in the area of a capacitor.

"నేను పల్చెడ్ పవర్ కెపాసిటర్లు: అత్యంత వొధమిక, కెపాసిటర్లు సమర్థవంతంగా చిన్న బ్యాటరీలు మరియు రసాయనిక ప్రతిచర్య బ్యాటరీల కంటే ప్రత్యేకమైన శక్తి నిల్వ సామర్థ్యాలను అందిస్తాయి. ఒక తక్కువ వ్యవధిలో అధిక శక్తి అవసరమైనప్పుడు, పెద్ద కెపాసిటర్లు మరియు కెపాసిటర్ల బ్యాంకులు అనేక అనువర్తనాల కోసం ఉన్నత ఎంపిక. ప్యానెడ్ పోయ్ & గీరాన్, రాడార్లు, కణ యాకింగ్ లెచ్టర్లు మరియు రైలుగన్స్ వంటి అనువర్తనాలకు శక్తిని నిల్వ చేయడానికి క్యాపసిటర్ బ్యాంకులు ఉపయోగించబడతాయి. పల్చెడ్ పవర్ కెపాసిటర్ యొక్క ఒక

సాధారణ అన్వయం డిస్టోజబుల్ కెమెరాలో ఫ్లాష్ ఉంది, త్వరితగతిన ఫ్లాష్ ద్వారా విడుదల చేయబడి, ప్రస్తుత పెద్ద పల్న్ అందించడం.

బ కెజోనెంట్ లేదా ట్యూష్ సర్క్యూట్ అఫ్సికేప్స్స్: నిరోధకాలు, కెపాసిటర్లు మరియు ఇంటెక్సర్లు ఫిల్టర్లను తయారు చేయడానికి ఉపయోగించవచ్చు, అయితే కొన్ని కాంబినేషన్లు ఇన్వాట్ సిగ్నల్సు విస్తరించడంలో ప్రతిధ్వనిని కూడా కలిగిస్తాయి. ఈ సర్క్యూట్లను సిగ్నల్సు విస్తరించేందుకు ఉపయోగిస్తారు (అతను ప్రతిధ్వనించే పోనఃపున్యం, తక్కువ వోల్టేజ్ ఇన్వాట్లను, ఒసిలేటర్లగా, అధిక వోల్టేజ్సు తయారు చేస్తారు .వినియోగదారుని సర్క్యూట్లలో, భాగాలను చూసే ఔత్తే వోల్టేజ్లను మనుగడ సాధించే భాగాలు ఎంచుకోవడానికి జాగ్రత్త తీసుకోవాలి వాటిలో లేదా వారు త్వరగా విపలమౌతుంది

కెపాసిటివ్ సెన్సింగ్ అఫ్సికేప్స్: కెపాసిటివ్ సెన్సింగ్ ఇటీవలే అధునాతన వినియోగదారు ఎలక్షానిక్స్ పరికరాలలో ఒక 7- సాధారణ లక్షణంగా మారింది, కెపాసిటివ్ సెన్సార్స్ దశభూలుగా ఫోనం, తేమ, ద్రవం ఫోయి, తయారీ నాణ్యతా నియంత్రణ మరియు త్వరణం కోసం వివిధ రకాల అనువర్తనాల్లో ఉపయోగిస్తున్నారు. కెపాసిటివ్ సెన్సింగ్ అనేది ఫోనిక పర్యావరణం యొక్క పరిమాణంలో విద్యుద్వాహకంలో మార్పు ద్వారా ఒక మార్పును గుర్తించడం ద్వారా పనిచేస్తుంది, ఇది పలకల మధ్య దూరంలో మార్పు కెపాసిటర్, లేదా కెపాసిటర్ యొక్క వీరాంతంలో మార్పు.

Transformers

టీరానాపుర్ణ

WORKING PRINCIPLE OF A TRANSFORMER, SPECIFICATIONS OF A TRANSFORMER, STEP-UP, STEP DOWN AND ISOLATION TRANSFORMERS

ఒక టీరానాపుర్ణ యొక్క పని సూత్రం, నిర్దేశాలు

ఒక టీరానాపుర్ణ, STEP-UP, STEP DOWN మరియు ISOLATION

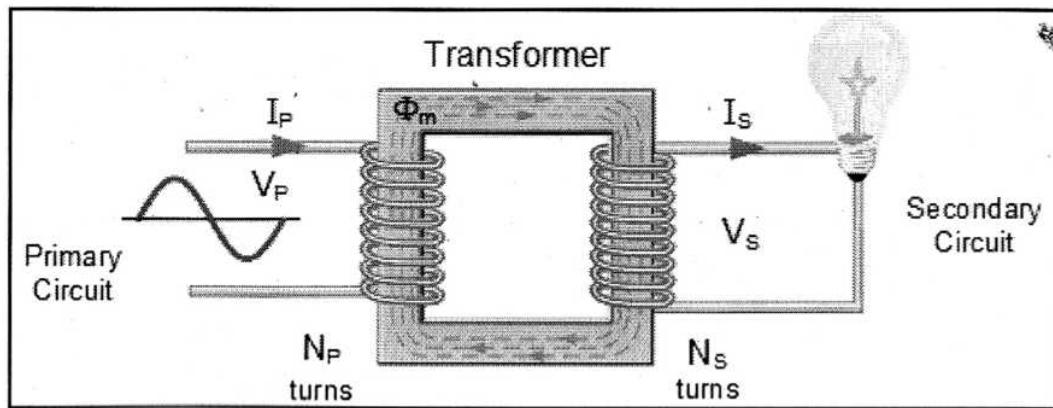
టీరానాపుర్ణ

The Voltage Transformer can be thought of as an electrical component rather than an electronic component. A transformer basically is very simple static (or stationary) electro-magnetic passive electrical device that works on the principle of Faradays law of induction by converting electrical energy from one value to another.

The transformer does this by linking together two or more electrical circuits using a common oscillating magnetic circuit which is produced by the transformer itself. A transformer operates on the principals of “electromagnetic induction”, in the form of Mutual Induction.

Mutual induction is the process by which a coil of wire magnetically induces a voltage into another coil located in close proximity to it. Then we can say that transformers work in the “magnetic domain”, and transformers get their name from the fact that they “transform” one voltage or current level into another.

Transformers are capable of either increasing or decreasing the voltage and current levels of their supply, without modifying its frequency, or the amount of electrical power being transferred from one winding to another via the magnetic circuit.


వోల్టేజ్ టీరానాపుర్ణ ఒక ఎలక్ట్రానిక్ భాగం కాకుండా ఒక ఎలక్షికల్ భాగంగా భావించవచ్చు. ఒక టీరానాపుర్ణ ప్రధానంగా ఒక సాధారణ షాట్టీక్ (లేదా ప్రిమ్యుల్) ఎలక్షి-మాగ్నెటీక్ పాసివ్ ఎలక్షికల్ పరికరం, ఇది పెరచేస్తే సూత్రం సూత్రం మీద పనిచేయడం ద్వారా విద్యుత్ శక్తిని ఒక విలువ నుండి మరొకదానికి మారుస్తుంది.

టీరానాపుర్ణ టీరానాపుర్ణ ద్వారా తయారయ్యే ఒక సాధారణ డోలనం మాగ్నెటీక్ సర్చ్యూట్లు ఉపయోగించి రెండు లేదా అంతకంటే ఎక్కువ విద్యుత్ వలయాలను కలిపేటట్లు

చేస్తుంది. ఒక టీరానాపుర్కు మ్యాచువల్ ఇండక్షన్ రూపంలో "విద్యుదయస్మాంత ఇండక్షన్" యొక్క ప్రధానోపాధ్యాయులను నిర్వహిస్తుంది.

పరస్పర పేరేరణ అనేది ఒక కాయల్ వైర్ అయస్మాంతపరంగా దీనికి సమీపంలో ఉన్న మరొక కాయల్లోకి ఒక వోల్టేజీ పేరేరేపిస్తుంది. టీరానాపుర్కుర్లు "అయస్మాంత షైతం" లో పనిచేస్తారని మేము చెప్పగలం, మరియు టీరానాపుర్కుర్లు తమ పేరును ఒక వోల్టేజ్ లేదా ప్రస్తుత షాయిని మరో రూపంలో "రూపాంతరం చేస్తారనే వాస్తవం నుండి వారి పేరును పొందుతారు.

టీరానాపుర్కును దాని ఫోర్కెస్ నీని సపరించకుండా, వారి సరఫరా యొక్క వోల్టేజ్ మరియు ప్రస్తుత షాయిలను పెంచడం లేదా తగ్గిపోయే సామర్థ్యాన్ని కలిగి ఉంటాయి లేదా అయస్మాంత వలయం ద్వారా మరొక వైండింగ్ నుండి మరొక బదిలీ చేయబడిన విద్యుత్ శక్తి యొక్క పరిమాణం.

Figure 6.1: Transformer

In other words, for a transformer there is no direct electrical connection between the two coil windings, thereby giving it the name also of an **Isolation Transformer**. Generally, the primary winding of a transformer is connected to the input voltage supply and converts or transforms the electrical power into a magnetic field. While the job of the secondary winding is to convert this alternating magnetic field into electrical power producing the required output voltage as shown.

A single phase voltage transformer basically consists of two electrical coils of wire, one called the "Primary Winding" and another called the "Secondary Winding". We will define the "primary" side of the transformer as the side that usually takes power, and the "secondary" as the side that usually delivers power. In a single-phase voltage transformer the primary is usually the side with the higher voltage.

These two coils are not in electrical contact with each other but are instead

wrapped together around a common closed magnetic iron circuit called the “core”. This soft iron core is not solid but made up of individual laminations connected together to help reduce the core’s losses.

The two coil windings are electrically isolated from each other but are magnetically linked through the common core allowing electrical power to be transferred from one coil to the other. When an electric current passed through the primary winding, a magnetic field is developed which induces a voltage into the secondary winding as shown.

మరో మాటలో చెప్పాలంచే, ఒక టీరాన్నాపర్పూర్ కోసం రెండు కాయల్ వైండింగ్ మధ్య ప్రత్యేక విద్యుత్ కనెక్షన్ ఉండదు, తద్వారా ఇది ఐసోలేపన్ టీరాన్నాపర్పూర్ యొక్క పేరును కూడా ఇస్తుంది. సాధారణంగా, ఒక టీరాన్నాపర్పూర్ యొక్క పొరాధమిక మూసివేత ఇన్సుప్ వోల్టేజ్ సరఫరాకు అనుసంధానించబడి, విద్యుత్ శక్తిని అయస్కాంత క్షేత్రంగా మారుస్తుంది లేదా మారుస్తుంది. ద్వారీయ మూసివేత పని ఈ ఆల్బర్ట్స్ టింగ్ అయస్కాంత క్షేత్రాన్ని విద్యుత్ ఉత్పత్తికి అవసరమైన ఉత్పత్తి వోల్టేజ్ ఉత్పత్తిగా మార్చడం.

ఒకే దశ వోల్టేజ్ టీరాన్నాపర్పూర్ ప్రధానంగా వైర్ యొక్క రెండు విద్యుత్ కాయలున్న కలిగి ఉంటుంది, ఏటిలో ఒకటి "ప్రైమరీ విండింగ్" మరియు మరొకటి "సెకండరీ విండింగ్" అని పిలువబడుతుంది. టీరాన్నాపర్పూర్ యొక్క "పొరాధమిక" ప్రక్కను సాధారణంగా అధికారాన్ని తీసుకునే వైపుగా మరియు "అధికారాన్ని" సాధారణంగా శక్తిని అందించే వైపుగా "ద్వారీయ"గా నిర్వచించాము. సింగిల్-ఫేజ్ వోల్టేజ్ టీరాన్నాపర్పూర్ పొరాధమికంగా సాధారణంగా అధిక వోల్టేజ్లో ఉంటుంది.

ఈ రెండు కాయల్ని ఒకదానితో మరొకటి విద్యుత్ సంబంధంలో లేవు, కానీ వాటిని "కోర్" అని పిలిచే ఒక సాధారణ మూసివున్న అయస్కాంత ఇనుము సర్వ్యాంగ్ చుట్టూకొని ఉంటాయి. ఈ మృదువైన ఐర్ కోర్ ఘనంగా లేదు, అయితే కోర్ లావాదేవీలను తగ్గించడంలో సహాయపడిన వ్యక్తిగత లాపినేషన్లు కలిసి ఉంటాయి.

రెండు కాయల్ వైండింగ్లు ఒకదానికటి నుండి విద్యుద్విధంగా వేరుచేయబడి ఉంటాయి, కానీ విద్యుత్ శక్తి ఒక కాయల్ నుండి మరొకదానికి ఒదిలీ చేయటానికి అనుమతించే ఉమ్మడి కోర్ ద్వారా అయస్కాంత సంబంధాన్ని కలిగి ఉంటుంది. ఒక విద్యుత్ ప్రవాహం పొరాధమిక మూసివేత ద్వారా వెళ్ళినప్పుడు, ఒక అయస్కాంత క్షేత్రం అభివృద్ధి చెందుతుంది, ఇది వోల్టేజ్ ను ద్వారీయ వంగడానికి దారితీస్తుంది.

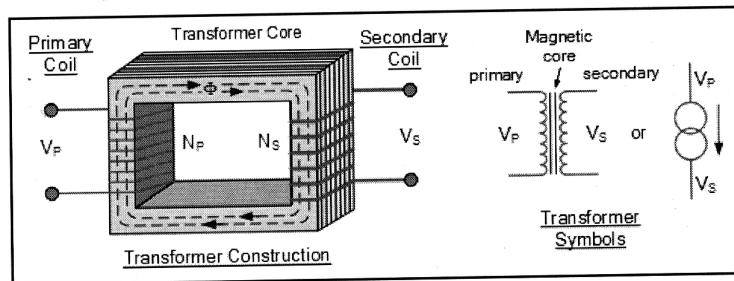


Figure 6.2: Transformer Construction

- Where:
- VP - is the Primary Voltage
- VS - is the Secondary Voltage
- NP - is the Number of Primary Windings
- NS - is the Number of Secondary Windings
- Φ (phi) - is the Flux Linkage (Magnetic linkage is also known as Flux linkage)

• ఎక్కడ:

- VP - ప్రాథమిక వోల్టేజ్
- VS - సెకండరీ వోల్టేజ్
- NP - ప్రాథమిక వైఫింగ్ సంఖ్య
- NS - సెకండరీ వైఫింగ్ సంఖ్య
- Φ (ఫై) - ఫ్లక్ లింకేజ్ (అయిస్కాంత అనుసంధానం కూడా ఫ్లక్ లింగేజ్ అంటారు)

Notice that the two coil windings are not electrically connected **but** are only linked magnetically. A single-phase transformer can operate to either increase or decrease the voltage applied to the primary winding.

రెండు కాయల్ వైఫింగ్ విద్యుత్ రంగా అనుసంధానించబడలేదు కానీ అయిస్కాంత పరంగా అనుసంధానించబడి ఉంటాయి. ఒక ఫ్లక్ టీరాన్నాగ్రూర్ ప్రాథమిక మూసివేతకు దరఖాస్తు చేసిన వోల్టేజ్ ను పెంచడానికి లేదా తగ్గిస్తుంది.

Step-up transformer: When a transformer is used to “increase” the voltage on its secondary winding with respect to the primary, it is called a Step-up transformer.

Step-down transformer: When a transformer is used to “decrease” the voltage on the secondary winding with respect to the primary it is called a Step-down

transformer.

Isolation Transformer: However, a third condition exists in which a transformer produces the same voltage on its secondary as is applied to its primary winding. In other words, its output is identical with respect to voltage, current and power transferred. This type of transformer is called an “Impedance Transformer” and is mainly used for impedance matching or the isolation of adjoining electrical circuits.

How the voltage changes in Primary and Secondary side: The difference in voltage between the primary and the secondary windings is achieved by changing the number of coil turns in the primary winding (NP) compared to the number of coil turns on the secondary winding (NS).

As the transformer is basically a linear device, a ratio now exists between the number of turns of the primary coil divided by the number of turns of the secondary coil. This ratio, called the ratio of transformation, more commonly known as a transformers “turns ratio”, (TR). This turns ratio value dictates the operation of the transformer and the corresponding voltage available on the secondary winding.

It is necessary to know the ratio of the number of turns of wire on the primary winding compared to the secondary winding. The turns ratio, which has no units, compares the two windings in order and is written with a colon, such as 3:1 (3-to-1). This means in this example, that if there are 3 volts on the primary winding there will be 1 volt on the secondary winding, 3 volts-to-1 volt. Then we can see that if the ratio between the number of turns changes the resulting voltages must also change by the same ratio, and this is true.

Transformers are all about “ratios”. The ratio of the primary to the secondary, the ratio of the input to the output, and the turns ratio of any given transformer will be the same as its voltage ratio. In other words for a transformer: “turns ratio = voltage ratio”. The actual number of turns of wire on any winding is generally not important, just the turns ratio and this relationship is given as:

A TRANSFORMERS TURNS RATIO T.R

$$T.R = N_p/N_s = \text{Number of Turns of Primary Coil/ Number of Turns of Secondary Coil} = V_p/V_s = \text{Primary Voltage/Secondary Voltage}$$

Note that the order of the numbers when expressing a transformers *turns ratio* value is very important as the turns ratio 3:1 expresses a very different

transformer relationship and output voltage than one in which the turns ratio is given as: 1:3.

షైఫ్-అప్ టీరానాన్పర్కూర్: ప్రైమరీకి సంబంధించి దాని ద్వారా కోల్డ్ జ్యూ "పెంచే" ఒక టీరానాన్పర్కూర్ ఉపయోగించినప్పుడు, దీనిని షైఫ్-అప్ టీరానాన్పర్కూర్ పిలుస్తారు.

షైఫ్-డోన్ టీరానాన్పర్కూర్: ప్రాథమికంగా సంబంధించి ద్వారా మూసివేతపై వోల్టేజ్ జ్యూ "తగ్గు" చేయడానికి టీరానాన్పర్కూర్ ఉపయోగించినప్పుడు, దీనిని దశ-డోన్ టీరానాన్పర్కూర్ పిలుస్తారు.

బసోలేషన్ టీరానాన్పర్కూర్: ఏమైనా, మూడో పరతు ఉంది, దీనిలో టీరానాన్పర్కూర్ దాని వోల్టేజ్ జ్యూ దాని సెకండరీలో ఉత్పత్తి చేస్తుంది, దీని ప్రాథమిక టైండింగ్ గ్యా వర్తించబడుతుంది. వేరిక మాటలో చెప్పాలంచే, వోల్టేజ్, ప్రస్తుత మరియు శక్తి బదిలీకి సంబంధించి దాని ఉత్పత్తి ఒకేలా ఉంటుంది. ఈ విధమైన టీరానాన్పర్కూర్ "జంపెడెన్స్ టీరానాన్పర్కూర్" అని పిలుస్తారు మరియు ఇది ప్రధానంగా ఆటంకపరిచే మ్యాచింగ్ లేదా పక్కనే ఉన్న విద్యుత్ వలయాల యొక్క ఒంటరిగా ఉపయోగించబడుతుంది.

ప్రాథమిక మరియు ద్వారా కోల్డ్ జ్యూ వోల్టేజ్ ఎలా మారుతుంది: ప్రాథమిక మరియు ద్వారా మూసివేత మధ్య వోల్టేజ్ వ్యత్యాసాన్ని ప్రాథమిక వైఫైంగ్ (ఎన్సి) లో కాయల్ మలుపుల సంఖ్యను మార్చడం ద్వారా సాధించవచ్చు, ఇది సెకండరీ మూసివేత (NS).

టీరానాన్పర్కూర్ ప్రాథమికంగా ఒక సరళ పరికరంగా ఉన్నప్పుడు, ద్వారా కాయల్ యొక్క మలుపుల సంఖ్యతో విభజించబడిన ప్రాథమిక కాయల్ యొక్క మలుపుల సంఖ్య మధ్య ఇప్పుడు ఒక నిష్పత్తి ఉంది. ఈ నిష్పత్తి, రూపాంతరం యొక్క నిష్పత్తి అని పిలుస్తారు, దీనిని సాధారణంగా టీరానాన్పర్కూర్ మలుపు నిష్పత్తి" (TR) అని పిలుస్తారు. ఈ నిష్పత్తి విలువ టీరానాన్పర్కూర్ యొక్క ఆపరేషన్ మరియు ద్వారా మూసివేతలో అందుబాటులో ఉన్న వోల్టేజ్ జ్యూ నిర్దేశిస్తుంది.

ద్వారా మూసివేతతో పోలిస్ట్ ప్రాథమిక మూసివేసేటప్పుడు వైర్ మలుపుల సంఖ్య యొక్క నిష్పత్తి తెలుసుకోవలసిన అవసరం ఉంది. సంఖ్య యూనిట్లు కలిగి మలుపులు నిష్పత్తి, క్రమంలో రెండు తీగలను పోల్చాడు మరియు 3: 1 (3-to-1), ఒక కోలన్ తో రాస్తారు. ఈ ఉదాహరణలో, ప్రాథమిక మూసివేతలో 3 వోల్టులు ఉన్నట్టయితే ద్వారా మూసివేతలో 1 వోల్ట్ ఉంటుంది, 3 వోల్ట్-ఎంసి-1 వోల్ట్. అప్పుడు మలుపుల సంఖ్యల మధ్య నిష్పత్తిలో మార్పులు ఉంచే, ఫలిత వోల్టేజ్ జ్యూ అదే నిష్పత్తిలో కూడా మారాలి మరియు ఇది నిజం.

టీరానాన్పర్కూర్ మొత్తం "నిష్పత్తులు". సెకండరీకి ప్రాథమిక నిష్పత్తిని, ఉత్పత్తిదనకు ఇన్సుట్ నిష్పత్తి, మరియు ఏదైనా టీరానాన్పర్కూర్ యొక్క మలుపుల నిష్పత్తి దాని వోల్టేజ్ నిష్పత్తి

వలె ఉంటుంది. ఒక టీరానాపుర్కుర్ కోసం ఇతర మాటలలో: "నిష్పత్తి = వోల్టేజ్ నిష్పత్తిని మారుస్తుంది". ఏ వైండింగ్ న వైర్ మలుపులు అసలు సంఖ్య సాధారణంగా ముఖ్యమైనది కాదు, కేవలం మలుపులు నిష్పత్తి మరియు ఈ సంబంధం ఇవ్వబడింది:

ఒక టీరానాపుర్కుర్ RATIO T.R

$T.R = N_p / N_s = \text{పీరాథమిక కాయల్} / \text{డీర్స్ ఆఫ్ సెకండరీ కాయల్} = V_p / V_s = \text{పీరాథమిక వోల్టేజ్} / \text{సెకండరీ వోల్టేజ్ యొక్క టర్ను సంఖ్య}$

ఒక టీరానాపుర్కుర్ ను వ్యక్తం చేసేటప్పుడు సంఖ్యల యొక్క క్రమాన్ని 1: 3 గా మలుపులు నిష్పత్తి ఇచ్చిన దాని కంచే చాలా భిన్నమైన టీరానాపుర్కుర్ సంబంధం మరియు అవుట్టువీల్ వోల్టేజ్ మలుపులు నిష్పత్తి 3: 1 వ్యక్తం చేస్తే నిష్పత్తి విలువ చాలా ముఖ్యమైనది.

Transformer Basics Example No1- Step Down Transformer

టీరానాపుర్కుర్ బేసిక్స్ ఉదాహరణ నెల్-షట్ డాన్ టీరానాపుర్కుర్

A voltage transformer has 3000 turns of wire on its primary coil and 1000 turns of wire for its secondary coil. What will be the turns ratio (TR) of the transformer.

$T.R = N_p / N_s = \text{Number of Turns of Primary Coil} / \text{Number of Turn of Secondary Coil}$
 $= 3000 / 1000 = 3:1 = V_p / V_s = \text{Primary Voltage} / \text{Secondary Voltage}$

This ratio of 3:1 (3-to-1) simply means that there are three primary windings for every one secondary winding. As the ratio moves from a larger number on the left to a smaller number on the right, the primary voltage is therefore stepped down in value as shown.

Thus if a Voltage of 240 V ac is applied on the primary or Input side there will be a Voltage of $240/3=80$ V ac on the Secondary or Output side. Thus it is a Step Down Transformer.

$$TR = V_p / V_s$$

Then the main purpose of a transformer is to transform voltages at preset ratios and we can see that the primary winding has a set amount or number of windings (coils of wire) on it to suit the input voltage. If the secondary output voltage is to be the same value as the input voltage on the primary winding, then the same number of coil turns must be wound onto the secondary core as there are on the primary core giving an even turns ratio of 1:1 (1-to-1). In other words, one coil turn on the secondary to one coil turn on the primary.

ఒక వోల్టేజ్ టీరానాపుర్కుర్ దాని పీరాథమిక కాయల్ మరియు దాని ద్వితీయ కాయల్ కోసం 1000 మలుపులు వైర్ 3000 మలుపులు కలిగి ఉంది. టీరానాపుర్కుర్ యొక్క మలుపులు నిష్పత్తి (TR) ఏమవుతుంది.

$$T.R = NP / NS = \text{పొరాధమిక కాయల్ యొక్క టర్ను సంఖ్య} / \text{సెకండరీ కాయల్ టర్ను యొక్క సంఖ్య} = 3000/1000 = 3: 1 = VP / VS = \text{పొరాధమిక వోల్టేజ్} / \text{సెకండరీ వోల్టేజ్}$$

3: 1 (3-to-1) యొక్క ఈ నిప్పత్తిని ప్రతి ఒక ద్వారీయ మూసివేతకు మూడు పొరాధమిక వరెడింగ్ ఉన్నాయని అర్థం. ఎదుమమైపున చిన్న సంఖ్య నుండి కుడిమైపున నిప్పత్తి పెద్ద సంఖ్యలో నుండి నిప్పత్తిని కదిపితే, పొరాధమిక వోల్టేజ్ విలువలో విలువను తగ్గించింది.

కాబట్టి 240 V AC యొక్క వోల్టేజ్ పొరాధమిక లేదా ఇన్వాటర్ మైపున వర్ట్రింపబడితే, $240/3 = 80$ V వోల్టేజ్ సెకండరీ లేదా అవట్యూట్ మైపున ఉంటుంది. అందుచే ఇది ఒక టీరాన్స్ డోన్ టీరాన్స్సాపర్చర్.

$$TR = VP / VS$$

అప్పుడు టీరాన్స్సాపర్చర్ యొక్క ప్రధాన ప్రయోజనం ముందుగానే నిప్పత్తులలో వోల్టేజ్సును మార్చడమే మరియు ఇన్వాటర్ వోల్టేజ్జు అనుగుణంగా పొరాధమిక మూసివేసేటట్లు దాని యొక్క సెట్ మొత్తాన్ని లేదా తీగలను (వైర్ యొక్క కాయల్స్) కలిగి ఉన్నాయని మేము చూడవచ్చు. ప్రథమ మూసివేత పై ఉన్న ఇన్వాటర్ వోల్టేజ్ యొక్క వోల్టేజ్ అదే విలువగా ఉన్నట్టయితే, అదే సంఖ్యలో కాయల్ మలుపులు ద్వారీయ కోర్డ్ గాయపడాలి, ఎందుకంటే పొరాధమిక కోర్డ్ 1: 1 (1-ట్లు-1). మరో మాటలో చెప్పాలంటే, పొరాధమిక పై ఒక కాయల్ మలుపులో ఒక కాయల్ ద్వారీయ షాంట్లో ఉంటుంది.

Transformer Basics Example No2- Step Up Transformer

టీరాన్స్సాపర్చర్ బేసిక్స్ ఉదాహరణ No2- స్టేప్ అప్ టీరాన్స్సాపర్చర్

We now reverse the situation. A voltage transformer has 1000 turns of wire on its primary coil and 3000 turns of wire for its secondary coil. What will be the turns ratio (TR) of the transformer.

$$TR = N_p / N_s = \text{Number of Turns of Primary Coil} / \text{Number of Turns of Secondary Coil} = 1000 / 3000 = 1:3$$

This ratio of 1:3 (1-to-3) simply means that there are three secondary windings for every one primary winding. As the ratio moves from a smaller number on the left to a larger number on the right, the primary voltage is therefore stepped up in value as shown.

Thus if a Voltage of 12 V ac is applied on the primary or Input side there will be a Voltage of 36 V ac on the Secondary or Output side. Thus it is a Step Up Transformer.

మేము ఇప్పుడు పరిష్కారించాలి. ఒక వోల్టేజ్ టీరాన్స్సాపర్చర్ దాని పొరాధమిక కాయల్ మరియు దాని ద్వారీయ కాయల్ కోసం 3000 మలుపులు వైర్ మీద 1000 మలుపులు కలిగి ఉంటుంది.

టీరానానుర్కు యొక్క మలుపులు నిష్పత్తి (TR) ఏమవతుంది.

$$\begin{aligned} \text{TR} = \text{NP} / \text{N} \text{లు} &= \text{ప్రాథమిక కాయల్ యొక్క టర్నూ సంఖ్య} / \text{సెకండరీ కాయల్ టర్నూ సంఖ్య} \\ &= 1000/3000 = 1: 3 \end{aligned}$$

1: 3 (1-to-3) యొక్క ఈ నిష్పత్తి ప్రతి ఒక్క ప్రాథమిక మూలిక మూడు ద్వితీయ రేఖలు ఉన్నాయని అర్థం. ఎదు వైపున పెంచ సంఖ్యలో కుడి వైపున ఉన్న సంఖ్యను చిన్న సంఖ్య నుండి కుడివైపుకి తరలిస్తే, ప్రాథమిక వోల్టేజ్ విలువలో విలువను పెంచుతుంది.

అందువల్ల 12 V AC యొక్క వోల్టేజ్ ప్రాథమిక లేదా ఇన్వాటర్ వైపున వర్తింపబడితే, సెకండరీ లేదా అవట్యుట్ వైపు 36 V AC యొక్క వోల్టేజ్ ఉంటుంది. అందువలన అది ఒక షైఫ్ అంటే టీరానానుర్కు.

Specifications of a Transformer

The following are the main specifications of a Transformer:

- 1- Type- Step up/ Step Down.
2. Material- Coils- Copper
- 3, Material- Core - Laminated Iron.
4. Turn Ratio- ex- 3:1
5. Primary Voltage- 240 Volts.
6. Secondary Voltage- ex 80 Volts.
7. VA Rating= This is the product of Voltage and Amperes on any side. This will be constant on both the sides. Thus for a Primary Transformer of TR= 3:1 the voltage on the secondary side will decrease by three times where as the current will increase three times. Thus 240 VA (This means on the primary side you have 1 A and on the secondary side you have 3 A). If we apply 240 V and the maximum load is 1 A then in the secondary side we will have a voltage of 80 V and the current will be 3 A.
8. Frequency- 50 Hz.
9. Maximum Temperature Rise- Ex. 115 deg C
10. Maximum Insulation Tolerance- Ex. Upto 180 deg

These are the basic specifications.

ఒక టీరానానుర్కు యొక్క లక్షణాలు

టీరానానుర్కు యొక్క ప్రధాన లక్షణాలు కీరిందివి:

- 1- పద్ధతి- అంటే రశ / షైఫ్ డెస్.

2. మెటీరియల్ - కాయల్స్-రాగి

3. మెటీరియల్ - కోర్ - లామినేచెడ్ ఐరన్.

4. టర్ని నిష్టత్తి - 3: 1

5. ప్రాథమిక వోల్టేజ్ - 240 వోల్టులు.

6. సెకండరీ వోల్టేజ్ - ఎక్స్ 80 వోల్ట్లు.

7. VA రేటింగ్ = ఇది ఏ వైపున వోల్టేజ్ మరియు యాంపెర్స్ యొక్క ఉత్పత్తి. ఈ రెండు వైపులా షిరంగా ఉంటుంది. తద్వారా $TR = 3: 1$ యొక్క ప్రాథమిక టీరానాగ్గిర్గెర్ కోసం ద్వారీయ భాగంలో వోల్టేజ్ మూడు సార్లు తగ్గుతుంది, ఇక్కడ ప్రస్తుతము మూడు సార్లు పెరుగుతుంది. అందువలన 240 VA (ఈ మీరు 1 A మరియు ద్వారీయ వైపు మీరు 3 A కలిగి ప్రాథమిక వైపు అర్ధం). మేము 240 V ను వర్తింపజేస్తే మరియు గరిష్ట లోడ్ 1 A తరువాత ద్వారీయ భాగంలో మనకు 80 V యొక్క వోల్టేజ్ ఉంటుంది మరియు ప్రస్తుత 3 ఎ.

8. ఫ్రెక్చెన్సీ - 50 Hz.

గరిష్ట ఉప్పోగ్రత పెరుగుదల - ఎక్స్. 115 డిగ్రీల సి

10. గరిష్ట నిరీధక టోలరేన్స్ - ఎక్స్. 180 డిగ్రీ వరకు

ఈ ప్రాథమిక లక్షణాలు.

Brainstorming- What is the output in the secondary for TR=3:1 if we apply 240 V dc??

Answer: There will be no output on the secondary side. This is because the transformer works on the principle of Electromagnetic Mutual Induction , which requires a voltage source that changes with time(alternating source) . Thus since a DC Supply is unidirectional, the transformer can't work.

Also please note that as transformers require an alternating magnetic flux to operate correctly, transformers cannot therefore be used to transform or supply DC voltages or currents, since the magnetic field must be changing to induce a voltage in the secondary winding. In other words, transformers DO NOT operate on steady state DC voltages, only alternating or pulsating voltages.

If a transformers primary winding was connected to a DC supply, the inductive reactance of the winding would be zero as DC has no frequency, so the effective Impedance of the winding will therefore be very low and equal only to the resistance of the copper used. Thus the winding will draw a very high current from the DC supply causing it to overheat and eventually burn out, because as we

know $I = V/R$.

బెరయినాన్ రింగ్ - మేము 240 V dc దరఖాస్తు చేస్తే TR = 3: 1 కొరకు సెకండరీలో ఉత్పత్తి ఏమిటి ??

జవాబు: సెకండరీ వైపు అవట్టువుట్ ఉండదు. టీరాన్ న్యూర్జర్ విద్యుదయసాగంత పరస్పర ఇండక్షన్ సూత్రంపై పనిచేస్తున్నందున, ఇది ఒక వోల్టేజ్ మూలానికి సమయం మారుతుంది (ప్రత్యామ్మాయ సోర్స్). అందువల్ల DC పంపిణీ ఎకదిశాత్మకమైనది కనుక టీరాన్ న్యూర్జర్ పనిచేయదు.

టీరాన్ న్యూర్జర్ సరిగ్గా పనిచేయటానికి ఒక ప్రత్యామ్మాయ మాగ్నిటిక్ ఫ్లక్స్ అవసరం కనుక దయచేసి గమనించండి, టీరాన్ న్యూర్జర్ డిస్ట్రిబ్యూషన్ వోల్టేజ్ లేదా ప్రవాహాలను రూపొంతరం చేయడానికి లేదా పంపిణీ చేయడానికి ఉపయోగించబడదు, ఎందుకంటే అయసాగంత క్లైట్రం ద్వారా మూలికేతలో ఒక వోల్టేజ్ న్యూ పీరేపించడానికి మారుతుంటుంది. మరో మాటలో చెప్పాలంటే, టీరాన్ న్యూర్జర్ నిలకడగా ఉన్న రాష్ట్ర DC వోల్టేజ్ లో పనిచేయవు, వోల్టేజ్ ను మాత్రమే ప్రత్యామ్మాయ లేదా ప్రకాశించే.

ఒక టీరాన్ న్యూర్జర్ ప్రైమరీ మూలికేత DC పంపిణీకి అనుసంధానించబడి ఉంటే, DC యొక్క శాసనఃపున్యం ఉండదు కాబట్టి, వైండింగ్ యొక్క ప్రైమరక ప్రతిచర్య సున్నగా ఉంటుంది, కాబట్టి వైండింగ్ యొక్క ప్రభావ పరిమితి చాలా తక్కువగా ఉంటుంది మరియు ఉపయోగించిన రాగి యొక్క నిరోధకతకు సమానంగా ఉంటుంది. అందువల్ల వైండింగ్ DC యొక్క పంపిణీ నుండి చాలా అధిక విద్యుత్తును గరిష్ట షాయికి తీసుకువస్తుంది, దీని వలన నేను వేటాడటం మరియు చివరికి బర్ను చేస్తాను, ఎందుకంటే మనకు నేను = V / R తెలుసు.

Electrical Power in a Transformer

Another one of the transformer basics parameters is its power rating. The power rating of a transformer is obtained by simply multiplying the current by the voltage to obtain a rating in Volt-amperes, (VA). Small single phase transformers may be rated In volt-amperes only, but much larger power transformers are rated in units of Kilo volt-amperes, (kVA) where 1 kilo volt-ampere is equal to 1,000 volt-amperes, and units of Mega volt-amperes, (MVA) where 1 mega volt-ampere is equal to 1 million volt-amperes.

In an ideal transformer (ignoring any losses), the power available in the secondary winding will be the same as the power in the primary winding, they are constant wattage devices and do not change the power only the voltage to current ratio. Thus, in an ideal transformer the Power Ratio is equal to one (unity) as the voltage, V multiplied by the current, I will remain constant.

That is the electric power at one voltage/current level on the primary is “transformed” into electric power, at the same frequency, to the same voltage/current level on the secondary side. Although the transformer can step-up (or step-down) voltage, it cannot step-up power. Thus, when a transformer steps-up a voltage, it steps-down the current and vice-versa, so that the output power is always at the same value as the input power. Then we can say that primary power equals secondary power, ($PP = PS$).

ఎలక్ట్రికల్ పవర్ ఇన్ టీరానాపర్చుర్

టీరానాపర్చుర్ బేసిక్స్ పారామితులలో మరో దాని శక్తి రేటింగ్. వోల్టేజ్-ఆంపియర్ (VA) లో రేటింగ్ ను పొందటానికి వోల్టేజ్ ద్వారా ప్రస్తుతము గుణించడం ద్వారా టీరానాపర్చుర్ యొక్క పవర్ రేటింగ్ పొందవచ్చు. చిన్న సింగిల్ ఫేజ్ టీరానాపర్చుర్ ను వోల్ట్-ఆంపియర్లో మాత్రమే అంచనా వేయవచ్చు, కానీ కిలో వోల్ట్-ఆంపియర్ (కె.వి.య.వి) యొక్క యూనిట్లలో చాలా పెద్ద విద్యుత్ టీరానాపర్చుర్ రేట్ చేయబడతాయి, ఇక్కడ 1 కిలో వోల్ట్-ఆంపియర్ 1,000 వోల్ట్ ఆంపియర్కు సమానం, మరియు మొగా వోల్ట్ (MVA), ఇక్కడ 1 మొగా వోల్ట్-ఆంపియర్ 1 మిలియన్ వోల్ట్ ఆంపియర్కు సమానంగా ఉంటుంది.

ఒక ఆదర్శ టీరానాపర్చుర్ (ఏ సషాలను విస్కరిస్తుంది), ద్వారీయ మూసివేతలో లబ్బించే శక్తి ప్రాథమిక వంచనలో అధికారం వలె ఉంటుంది, ఇవి ఫీరమైన వాచేజ్ పరికరాలను కలిగి ఉంటాయి మరియు ప్రస్తుత నిష్పత్తికి వోల్టేజ్ మాత్రమే శక్తిని మార్చవు. ఆ విధంగా, ఆదర్శవంతమైన టీరానాపర్చుర్ పవర్ రేపియో వోల్టేజ్ పన్ (ఐక్యత) కు సమానంగా ఉంటుంది, V ద్వారా గుణిస్తే, నేను ఫీరంగా ఉంటుంది.

ఇది ఒక వోల్టేజ్ / ప్రస్తుత షాయిలో ప్రాథమిక విద్యుత్ ప్రవాహం వద్ద విద్యుత్ శక్తిగా మారుతుంది, అదే శాసనఃపున్యంలో అదే ద్వారీయ శరేణిలో అదే వోల్టేజ్ / ప్రస్తుత షాయికి ఉంటుంది. టీరానాపర్చుర్ షైఫ్-అప్ (లేదా షైఫ్-డోన్) వోల్టేజ్ అయినప్పటికీ, అది పవర్-అప్ శక్తిని కాదు. అందువలన, ఒక టీరానాపర్చుర్ దశలను ఒక వోల్టేజ్ ఉన్నప్పటి, ఇది ప్రస్తుత మరియు వైన్ వెర్సాకి దశలను-డోన్ చేస్తుంది, తద్వారా అవుట్టుట్ శక్తి ఎల్లపుండూ ఇన్వాట్ శక్తి వలె అదే విలువలో ఉంటుంది. అప్పుడు మనము ప్రాథమిక శక్తి ద్వారీయ శక్తిని సమానం, ($PP = PS$) అని చెప్పవచ్చు.

Power in a Transformer

$$\text{Power}_{\text{Primary}} = \text{Power}_{\text{Secondary}}$$

$$P_{(\text{PRIM})} = P_{(\text{SEC})} = V_p I_p \cos \theta_p = V_s I_s \cos \theta_s$$

Where: Φ_p is the primary phase angle and Φ_s is the secondary phase angle.

Note that since power loss is proportional to the square of the current being transmitted, that is: I^2R , increasing the voltage, let's say doubling ($\times 2$) the voltage would decrease the current by the same amount, ($\div 2$) while delivering the same amount of power to the load and therefore reducing losses by factor of 4. If the voltage was increased by a factor of 10, the current would decrease by the same factor reducing overall losses by factor of 100.

టీరానానుర్కుర్లో పవర్

$$\text{Power}_{\text{Primary}} = \text{Power}_{\text{Secondary}}$$

$$P_{(\text{PRIM})} = P_{(\text{SEC})} = V_p I_p \cos \theta_p = V_s I_s \cos \theta_s$$

ఎక్కడ: Φ_p వీరాధమిక దశ కోణం మరియు Φ లు ద్వార్తీయ దశ కోణం.

ప్రస్తుత నష్టం సంభవించే చతుర్స్థానికి విద్యుత్తు నష్టం అనుపాతంలో ఉండటం వలన: I^2R , ఒల్టేజీని పెంచుతుంది, రెట్టింపు ($\times 2$) వోల్టేజ్ అదే మొత్తాన్ని ప్రస్తుత ఫౌయిని తగ్గిస్తుందని చెప్పండి, ($\div 2$) బరువుకు పరిమాణాన్ని బట్టి, నష్టాలను తగ్గించటం వలన 4 కారకం. వోల్టేజ్ 10 కారకం ద్వారా పెరిగినట్లయితే, మొత్తం 100 కారకం ద్వారా మొత్తం నష్టాలను తగ్గించే అదే కారకం ద్వారా తగ్గిపోతుంది.

Transformer Basics - Efficiency

A transformer does not require any moving parts to transfer energy. This means that there are no friction or windage losses associated with other electrical machines. However, transformers do suffer from other types of losses called “copper losses” and “iron losses” but generally these are quite small.

Copper losses, also known as I^2R loss is the electrical power which is lost in heat as a result of circulating the currents around the transformers copper windings, hence the name. Copper losses represents the greatest loss in the operation of a transformer. The actual watts of power lost can be determined (in each winding) by squaring the amperes and multiplying by the resistance in ohms of the winding (I^2R).

Iron losses, also known as hysteresis is the lagging of the magnetic molecules within the core, in response to the alternating magnetic flux. This lagging (or out-of-phase) condition is due to the fact that it requires power to reverse magnetic molecules; they do not reverse until the flux has attained sufficient force to reverse them.

Their reversal results in friction, and friction produces heat in the core which

is a form of power loss. Hysteresis within the transformer can be reduced by making the core from special steel alloys.

The intensity of power loss in a transformer determines its efficiency. The efficiency of a transformer is reflected in power (wattage) loss between the primary (input) and secondary (output) windings. Then the resulting efficiency of a transformer is equal to the ratio of the power output of the secondary winding, P_s to the power input of the primary winding, P_p and is therefore high.

An ideal transformer is 100% efficient because it delivers all the energy it receives. Real transformers on the other hand are not 100% efficient and at full load, the efficiency of a transformer is between 94% to 96% which is quite good. For a transformer operating with a constant voltage and frequency with a very high capacity, the efficiency may be as high as 98%. The efficiency, η of a transformer is given as:

$$\begin{aligned}\text{efficiency, } \eta &= \frac{\text{Output Power}}{\text{Input Power}} \times 100\% \\ &= \frac{\text{Input Power} - \text{Losses}}{\text{Input Power}} \times 100\% \\ &= \frac{\text{Losses}}{\text{Input Power}} \times 100\%\end{aligned}$$

where: Input, Output and Losses are all expressed in units of power.

Generally when dealing with transformers, the primary watts are called “volt-amps”, VA to differentiate them from the secondary watts. Then the efficiency equation above can be modified to:

$$\text{Efficiency, } \eta = \frac{\text{Secondary Watts (Output)}}{\text{Primary VA (Input)}}$$

It is sometimes easier to remember the relationship between the transformers input, output and efficiency by using pictures. Here the three quantities of VA, W and η have **been** superimposed into a triangle giving power in watts at the top with volt-amps **and** efficiency at the bottom. This arrangement represents the actual position of each quantity in the efficiency formulas.

ట్రాన్స్‌ఫోర్మెన్స్ - ఎఫిషియెన్స్

ఈ ట్రాన్స్‌ఫోర్మెన్స్ ఎటువంటి కదిలే భాగాలను శక్తిని బదిలీ చేయవలసిన అవసరం లేదు.

దీని అర్థం ఇతర విద్యుత్ యంత్రాలతో సంబంధం లేని ఘర్షణ లేదా గాలులు నష్టాలు లేవు. అయితే, టీరానాగ్పర్గైర్ ను "రాగి నష్టాలు" మరియు "ఇనుప నష్టాలు" అని పిలిచే ఇతర రకాల నష్టాలతో బాధపడుతుంటాయి, అయితే ఇవి సాధారణంగా చాలా చిన్నవి.

I2R నష్టం అని కూడా పిలువబడే కాపర్ నష్టాలు విద్యుత్ శక్తి ఇది టీరానాగ్పర్గైర్ రాగి మూసివేతలు చుట్టూ ప్రవాహాలను తిరుగుతూ ఫలితంగా వేడిని కోల్పోతుంది. కాపర్ నష్టాలు ఒక టీరానాగ్పర్గైర్ యొక్క ఆపరేషన్స్ గోప్ప నష్టాన్ని సూచిస్తాయి. విద్యుత్ శక్తి యొక్క వాస్తవ వాట్లను (ప్రతి మూసివేతలో) ఆంపియర్లు చతుర్స్థానాలలో చేసి, మూసివేసే ఒహ్మాన్ (I2R) లో ప్రతిఘటన ద్వారా గుణించడం ద్వారా నిర్దయించబడుతుంది.

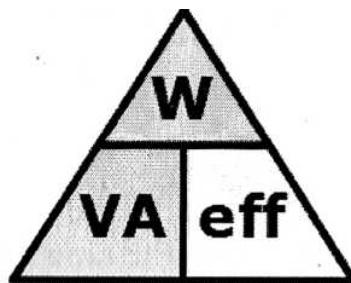
ఐష్వర్య నష్టాలు, హిస్టీరిసిస్టా కూడా పిలువబడతాయి, అయస్కాంత అవాహనానికి ప్రత్యామ్నాయంగా, ప్రధాన లోపల అయస్కాంత అణువుల వెనుకబడి ఉంది. ఈ వెనుకబడి (లేదా వెలుపల దశ) పరిష్కారితి అయస్కాంత అణువులను తిరగడానికి శక్తి అవసరమవుతుంది; ఫ్లక్స్ వాటిని రివర్స్ చేయడానికి తగినంత శక్తిని సాధించినంత వరకు అవి తిరగలేదు.

ఘర్షణలో వాటి తిరీగున ఫలితాలు, మరియు ఘర్షణ శక్తిని కోల్పోయే ఒక రకమైన కోర్టో ఉష్టాన్ని ఉత్పత్తి చేస్తాయి. టీరానాగ్పర్గైర్ లోపల గర్వాశయ లోపలిభాగం ప్రత్యేక ఉక్క మిశ్రమాల నుండి కోర్టు తయారు చేయడం ద్వారా తగ్గించవచ్చు.

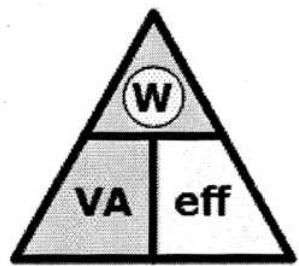
టీరానాగ్పర్గైర్ విద్యుత్ నష్టం తీవ్రత దాని సామర్థ్యాన్ని నిర్దయిస్తుంది. పేరాధమిక (ఇన్స్పెక్టర్) మరియు ద్వీతీయ (అవట్యుట్) విండింగుల మధ్య శక్తి (వాటేజ్) నష్టంలో టీరానాగ్పర్గైర్ యొక్క సామర్థ్యాన్ని ప్రతిఖింబిస్తుంది. అప్పుడు ఒక టీరానాగ్పర్గైర్ యొక్క ఫలిత సామర్థ్యము ద్వీతీయ మూసివేత యొక్క శక్తి ఉత్పాదక నిష్పత్తిలో సమానంగా ఉంటుంది, పేరాధమిక మూసివేత, పిపి యొక్క పవర్ ఇన్స్పెక్టర్ కు PS మరియు అందువలన ఎక్కువగా ఉంటుంది.

ఆదర్శవంతమైన టీరానాగ్పర్గైర్ 100% సమర్థవంతమైనది ఎందుకంచే అది అందుకున్న అన్ని శక్తిని అందిస్తుంది. మరోవైపు రియల్ టీరానాగ్పర్గైర్ 100% సమర్థవంతమైనవి కాదు మరియు పూర్తి లోడ్డో ఉంటాయి, టీరానాగ్పర్గైర్ యొక్క సామర్థ్యం 94% నుండి 96% వరకు మంచిది, ఇది మంచిది. ఫీరమైన వోల్టేజ్ మరియు పొనఃపున్యంతో అధిక సామర్థ్యాన్ని కలిగిన ఒక టీరానాగ్పర్గైర్ కోసం, సామర్థ్యం 98% కంటే ఎక్కువగా ఉంటుంది. ఒక టీరానాగ్పర్గైర్ యొక్క సామర్థ్యం, ఇలా ఉంటుంది:

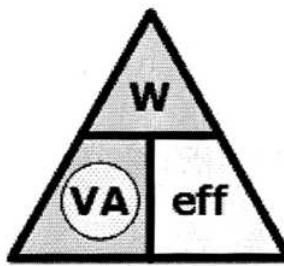
$$\begin{aligned}
 \text{efficiency, } \eta &= \frac{\text{Output Power}}{\text{Input Power}} \times 100\% \\
 &= \frac{\text{Input Power} - \text{Losses}}{\text{Input Power}} \times 100\% \\
 &= \frac{\text{Losses}}{\text{Input Power}} \times 100\%
 \end{aligned}$$

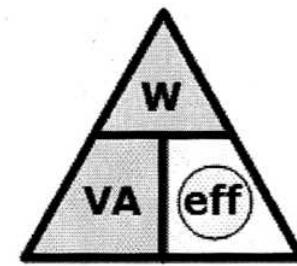

ఎక్కడ: ఇన్పుట్, అవుట్పుట్ మరియు నష్టాలు అన్ని యూనిట్ యూనిట్లలో వ్యక్తికరించబడతాయి.

సాధారణంగా టీరానాప్పర్క్చర్ వ్యవహారించేటప్పుడు, పీరాథమిక వాట్స్‌ను "వోల్ట్-ఆంప్" అని పిలుస్తారు, VA సెకండరీ వాట్ నుండి వాటీని వేరు చేస్తాయి. అప్పుడు వై సమీకరణ సమీకరణం సవరించబడుతుంది:

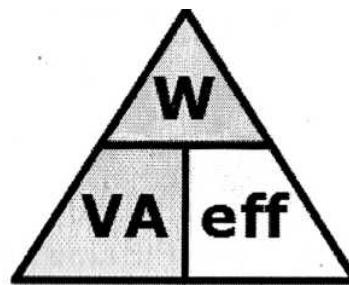

$$\text{Efficiency, } \eta = \frac{\text{Secondary Watts (Output)}}{\text{Primary VA (Input)}}$$

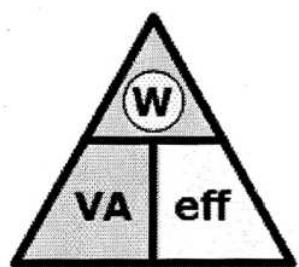
చిత్రరాలను ఉపయోగించి టీరానాప్పర్క్చర్ ఇన్పుట్, అవుట్పుట్ మరియు సమర్థత మధ్య సంబంధాన్ని గుర్తుంచుకోవడం కొన్నిసార్లు సులభం. ఇక్కడ మూడు పరిమాణాలు VA, W మరియు η | దిగువన వోల్ట్-ఆంప్ మరియు సమర్థతతో ఎగువన వాట్లలో అధికారాన్ని ఇచ్చే తీరిభుజంలోకి అతిక్రమిస్తారు. ఈ ఆమరిక, సమర్థత సూత్రరాలలో ప్రతి పరిమాణంలో అసలు పోనాన్ని సూచిస్తుంది.


Transformer Efficiency

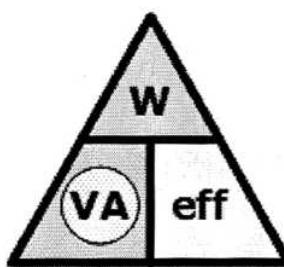

and transposing the above triangle quantities gives us the following combinations of the same equation:

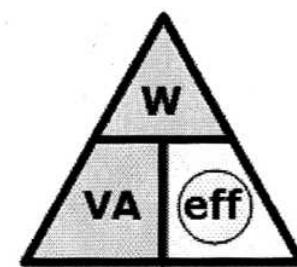
$$\textcircled{W} = \text{VA} \times \text{eff}$$


$$\textcircled{VA} = \frac{W}{\text{eff}}$$


$$\textcircled{eff} = \frac{W}{\text{VA}}$$

Then, to find Watts (output) = VA x eff., or to find VA (input) = W/eff., or to find Efficiency, effi = W/VA, etc.


ట్రాన్సాఫ్ఫర్ ఎఫిషియెన్స్


మరియు పైన ఉన్న తీరిభుజం పరిమాణాలను మారుట అదే సమీకరణం యొక్క క్రింది కలయికలను ఇస్తుంది:

$$\textcircled{W} = \text{VA} \times \text{eff}$$

$$\textcircled{VA} = \frac{W}{\text{eff}}$$

$$\textcircled{eff} = \frac{W}{\text{VA}}$$

అప్పుడు, వాట్స్ (అప్పట్టుపో) = VA x ఎఫ్షిష్చ్, లేదా VA (ఇన్స్పో) = W / ఎక్స్స్చ్, లేదా సమర్థత, effi = W / VA, మొదలైనవి కనుగొనేందుకు.

Assessment Questions:

అనెన్నెంట్ ప్రశ్నలు:

1. What is a Transformer?

Ans: A Transformer changes the voltage level (or current level) on its input winding to another value on its output winding using a magnetic field.

1. టీర్చాన్నార్కు అంటే ఏమిటి?

మరియు: ఒక టీరానాన్పర్స్ వోల్టేజ్ ఫోయి (లేదా ప్రస్తుత ఫోయి) దాని ఇన్పువ్ పై మరొక విలువకు అయస్కాంత క్లేర్టరాన్ని ఉపయోగించి దాని అవుటువ్వు మూసివేసేటప్పుడు మారుస్తాంది.

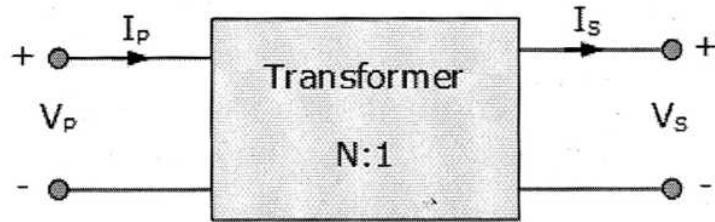
2. What is the principle of operation of a Transformer?

Ans.: A transformer consists of two electrically isolated coils and operates on Faraday's principle of "mutual induction", in which an EMF is induced in the transformer's secondary coil by the magnetic flux generated by the voltages and currents flowing in the primary coil winding.

2. ట్రాన్స్పోర్ట్ యొక్క పనితీరు సూత్రం ఏమిటి?

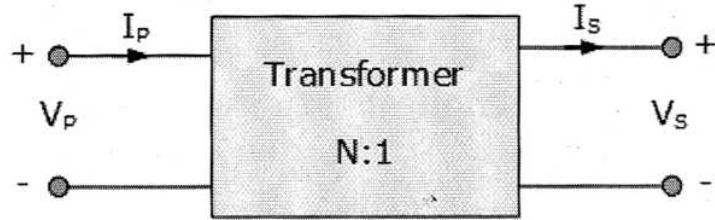
జ: టీరొనాన్నిర్మి రెండు ఎలక్ట్రికల్లీ ఏకలీచెడ్ కాయల్న ను కలిగి ఉంటుంది మరియు ఫేరడే యొక్క "పరస్పరప్రేరేపణ" యొక్క ప్రధానాంశంలో పనిచేస్తుంది, దీనిలో EMF అనేది ప్రాథమిక కాయల్ విండింగ్స్ ప్రవహించే వోల్టేజ్ మరియు ప్రవాహాల ద్వారా ఉత్పత్తి చేయబడిన మాగ్నిటిక్ ఫ్లోర్స్ ద్వారా టీరొనాన్నిర్మి ద్వారా ఏకలీచెడ్ కాయల్లో ప్రేరేపిస్తుంది.

3. How are the Primary and Secondary windings generally connected?


Ans.: Both the primary and secondary coil windings are wrapped around a common soft iron core made of individual laminations to reduce eddy current and power losses. The primary winding of the transformer is connected to the AC power source which must be sinusoidal in nature, while the secondary winding supplies power to the load.

3. ప్రాథమిక మరియు సెకండరీ గాలులు సాధారణంగా ఎలా కనెక్ట్ చేయబడతాయి?

జ: రెండు ప్రధాన మరియు ద్వితీయ కాయల్ వలయాలు ఒక సాధారణ స్టాష్టిక్ పరిస్థితిలో చుట్టుపడి ఉంటాయి. టీఎస్‌ఎస్‌ఎస్‌ ప్రధాన మూసివేత ఆస్ట్రేలియా మూలానికి అనుసంధానించబడి ఉంటుంది, ఇది సెంటలోయిడల్సు ప్రకృతిలో ఉండాలి, ద్వితీయ మూసివేత లోడ్ శక్తిని సరఫరా చేసుంది.


4. Give a block diagram of a Transformer?

Ans.: We can represent the transformer in block diagram form as follows

4. టీరానాపుర్కు యొక్క భ్యాక్ రేఖాచిత్రం ఇవ్వండి?

జ: మేము ఈ కింది విధంగా భ్యాక్ రేఖాచిత్రం రూపంలో టీరానాపుర్కు సూచిస్తాము

5. What is Turnover Ratio?

Ans.: This is the ratio of number of coils in the input i.e Primary Coil to the number of coils in the output i.e Secondary coils. The ratio of the transformers primary and secondary windings with respect to each other produces either a step-up voltage transformer or a step-down voltage transformer with the ratio between the number of primary turns to the number of secondary turns being called the “turns ratio” or “**transformer** ratio”.

5. టర్నోవర్ నిష్పత్తి ఏమిటి?

Ans. : ఇది అవుట్యూట్ i.e ప్రాథమిక కాయల్ యొక్క కాపిల్స్ సంఖ్య యొక్క అవుట్యూట్ లో అవుట్ కాయల్ సంఖ్య. టీరానాపుర్కు ప్రాథమిక మరియు ద్వితీయ మూసివేతలు ఒకదానికొకటి సంబంధించి ఒక షైఫ్ అప్ వోల్టేజ్ టీరానాపుర్కు లేదా ఒక దశ-డేచ్ వోల్టేజ్ టీరానాపుర్కు ఉత్పత్తి చేస్తుంది, దీనితో మధ్యంతర మలుపుల సంఖ్యకు మధ్య మారుతుంది, "మలుపు నిష్పత్తి "ఓ" టీరానాపుర్కు నిష్పత్తి ".

6. What is Step Up Transformer?

Ans.: If the Turnover Ratio is less than unity, $n < 1$ then NS is greater than NP and the transformer is classed as a step-up transformer. This increase the output voltage (and decreases the output current).

6. షైఫ్ అప్ టీరానాపుర్కు అంశే ఏమిటి?

జ: టర్నోవర్ నిష్పత్తి ఇక్కణ కంశే తక్కువగా ఉంటే, $n < 1$ తరువాత NS NP కంశే ఎక్కువగా ఉంటుంది మరియు టీరానాపుర్కు ఒక షైఫ్ అప్ టీరానాపుర్కు వర్ధికరించబడుతుంది. ఇది

అవట్టుట్ వోల్టేజ్స్ పెంచుతుంది (మరియు అవట్టుట్ కరెంట్ తగ్గుతుంది).

7. What is a Step down transformer.

Ans.: What is Step down Transformer- If the Turnover Ratio is greater than unity, $n > 1$, that is NP is greater than NS, the transformer is classed as a step-down transformer. This decreases the output voltage (and increases the output current)

7. దశ డోన్ టీరాన్స్‌ఫోర్మెంటర్ అంటే ఏమిటి.

జ: టీరాన్స్‌ఫోర్మెంటర్ డోన్ దశ అంటే ఏమిటి? - టర్మినల్ నిమ్మత్తి ఇక్కణ కంటే ఎక్కువ ఉంటే, $n > 1$, NP అనేది NS కంటే ఎక్కువగా ఉంటుంది, టీరాన్స్‌ఫోర్మెంటర్ ఒక షైఫ్ట్ డోన్ టీరాన్స్‌ఫోర్మెంటర్ వర్ధికరించబడుతుంది ఇది అవట్టుట్ ఒల్టేజ్సిని తగ్గిస్తుంది (మరియు అవట్టుట్ పెంచుతుంది ప్రస్తుత)

8. Can Step Down transformer be used as Step Up Transformer.? If Yes How?

Ans.: Yes, a single phase step-down transformer can also be used as a step-up transformer simply by reversing its connections and making the low voltage winding its primary, and vice versa as long as the transformer is operated within its original VA design rating.

8. షఫ్ట్ డోన్ టీరాన్స్‌ఫోర్మెంటర్ షైఫ్ట్ అప్ టీరాన్స్‌ఫోర్మెంటర్ గా ఉపయోగించవచ్చు. అవును ఎలా?

జ: అవును, ఒక దశ దశ డోన్ టీరాన్స్‌ఫోర్మెంటర్ ను కూడా ఒక షైఫ్ట్-అప్ టీరాన్స్‌ఫోర్మెంటర్ కూడా ఉపయోగించవచ్చు, దాని అనుసంధానాలను మార్చడం ద్వారా మరియు దాని పొరాథమిక VA లో తక్కువ వోల్టేజ్స్ మూసివేయడం ద్వారా మరియు దాని అసలు VA డిజైన్ రేటింగ్.

9. What is an Isolation Transformer?

Ans.: If the turns ratio is equal to unity, $n = 1$ then both the primary and secondary have the same number of windings, therefore the voltages and currents are the same for both windings. This type of transformer is classed as an isolation transformer as both the primary and secondary windings of the transformer have the same number of volts per turn.

9. ఎషిలోషన్ టీరాన్స్‌ఫోర్మెంటర్ అంటే ఏమిటి?

జ: ఒకవేళ మలుపులు నిమ్మత్తి ఇక్కణకు సమానమైతే, $n = 1$ తరువాత పొరాథమిక మరియు ద్వారీయ రెండింటిని ఒకే రకమైన వైఫింగ్స్ కలిగవుంటాయి, అందువల్ల వోల్టేజ్స్ మరియు ప్రవాహాలు రెండూ ఒకే విధంగా ఉంటాయి. టీరాన్స్‌ఫోర్మెంటర్ యొక్క పొరాథమిక మరియు ద్వారీయ మూసివేతలు రెండింటికి ఒకే వోల్ట్ సంఖ్యను కలిగి ఉన్నందున ఈ విధమైన టీరాన్స్‌ఫోర్మెంటర్ ఒక

ఐసోలేషన్ ట్రాన్స్‌ఫార్మర్ ను వర్ధికరించబడుతుంది.

10. What is efficiency of a Transformer.?

Ans.: The efficiency of a transformer is the ratio of the power it delivers to the load to the power it absorbs from the supply. In an ideal transformer there are no losses so no loss of power then $P_{in} = P_{out}$.

10. ట్రాన్స్‌ఫార్మర్ యొక్క సామర్థ్యం ఏమిటి?

జ: ట్రాన్స్‌ఫార్మర్ యొక్క సామర్థ్యం అది సరఫరా నుండి శోషించే శక్తికి లోటును అందించే శక్తి యొక్క నిష్పత్తి. ఆదర్శవంతమైన ట్రాన్స్‌ఫార్మర్ లో ఎటువంటి నష్టాలు లేవు, అందువల్ల పిన్ = అవ్యవ్.

- Electronics Active Components and Testing

ఎలక్ట్రానిక్స్ యాక్టివ్ కాంపోనెంట్స్ అండ్ చెప్పింగ్
BASIC ELECTRONICS ACTIVE COMPONENTS,
TESTING OF COMPONENTS

BASIC ELECTRONICS ACTIVE COMPONENTS,
COMPONENTS పరీక్ష

Experiment no: 1

Name of Experiment: Testing of active & passive component with the help of C.R.O and digital multimeter

Aim: To study the function of digital multimeter & C.R.O & testing various components like passive and active components such as resistance, capacitance , inductance, classical diodes, zener diodes, photodiode, Light Emitting Diodes, BJT, JFET and MOSFET.

Theory: In component testing process, we test the continuity and the I-V characteristics of various component like resistor, capacitor, diode and transistors.

ప్రయోగాత్మక పేరు: సిఆర్ఎం మరియు డిజిటల్ మల్టిమీటర్ సహయంతే క్రియాశీల & నిప్పిచ్చయాత్మక అంశానికి పరీక్ష AIM: డిజిటల్ మల్టిమీటర్ & C.R.O యొక్క ఫంక్షన్ అధ్యయనం మరియు నిరోధకత, కెపాసిటెన్స్, ఇండక్షన్స్, క్లాసిక్ డయోడ్లు, జెనర్ డయోడ్లు, Photodiode, లైట్ ఎమిటింగ్ డయోడ్లు, BJT, JFET మరియు MOSFET వంటి నిప్పిచ్చయాత్మక మరియు క్రియాశీల భాగాలు వంటి అనేక భాగాలు పరీక్షించడానికి. సిద్ధాంతం: కాంపోనెంట్ చెప్పింగ్ ప్రక్రియలో, మనం కొనసాగింపు మరియు I-V లక్షణాలను పరీక్ష యంత్రం, కెపాసిటర్, డయోడ్ మరియు టీరానిగప్పర్లు వంటి వివిధ అంశాలపై పరీక్షించాము.

Wires and Connectors:we use the following wires:

1. Single Strand wire of SWG 22 or SWG23. SWG22 is preferred because it snugly fits the solder-less, spring loaded contact points in the breadboard. SNUGLY means neither loose nor tight. SWG is Standard Wire Guage. 22 means diameter $\langle J \rangle = (1/22)$ inch. These are used as hookup wire for making connections on the breadboard.

SWG 22 లేదా SWG23 యొక్క సింగిల్ ప్లోండ్ వైర్. SWG22 పీరాధాన్యం ఎందుకంచే అది ఉంకరు-తక్కువ, స్ప్రెంట్ లోడ్ చేసిన సంప్రదింపు పాయింట్లు breadboard లో ఉండుటకు అవసరం కాదని అన్నాడు. SWG అనేది పీరామాటిక్

వైర్ గోబ్. 22 అర్ధం వ్యాసం <J> = (1/22) అంగుళం. వీటిని breadboard లో కనెక్టను చేయడానికి hookup వైర్ గా ఉపయోగిస్తారు.

2. Multi strand wires are flexible wires used as connecting wires between the Power supply and the bus of the circuit. Bus are lines which act as GROUND/EARTH, lines which act as (+)ve bus or as (-)ve bus. The gauge ■ of multi-strand wire can be SWG 7/36 or SWG 14/36. SWG 14/36 means 14 strands and 1/36 inch in dia. These multi strand wires have banana plug on one end and crocodile clip on the other. By banana plug they are tied on the banana socket on the power supply and by crocodile clip it is clipped on the hook up wire connected in the bread board.

మళ్ళీ షాండ్ వైర్ విద్యుత్ సరఫరా మరియు సర్క్యూట్ బస్సుల మధ్య తీగలని ఉపయోగించడం వంటి మృదువైన తీగలు. బస్సులు (+) బ్స్ లేదా (-) బ్స్ లాగ పనిచేసే GROUND / EARTH, లైన్లు పనిచేస్తాయి. బహుళ షాండ్ వైర్ యొక్క గజిబిజి SWG 7/36 లేదా SWG 14/36 గా ఉంటుంది. SWG 14/36 అంచే 14 పొడవు మరియు 1/36 అంగుళాల అంగుళాలు. ఈ బహుళ షాండ్ వైర్ ఒక ముగింపులో అరటి ఫ్ల్గ్ మరియు ఇతర న మొసలి క్లిప్ కలిగి ఉంటాయి. అరటి ఫ్ల్గ్ ద్వారా వారు విద్యుత్ సరఫరాలో అరటి సాకెట్ మీద కట్టబడి మరియు మొసలి క్లిప్ ద్వారా బీరెడ్ బోర్డులో కనెక్ట చేయబడిన హర్క్ అవ్ వైర్లో కప్పబడి ఉంటుంది.

3. There are various types of wires. There are two cores or three cores shielded wires. In one sheath there are two or three insulated SWG14/36 wires. The sheath can be shielded in wire-mesh shields. This prevents Electro-magnetic interference and pick-up. There are unshielded wires with two and three cores.

3. వివిధ రకాల తీగలు ఉన్నాయి. రెండు కోర్డు లేదా మూడు కోర్డు వైర్ కవచం ఉన్నాయి. ఒక తొడుగులో రెండు లేదా మూడు ఇన్సులేచెడ్ SWG14 / 36 తీగలు ఉన్నాయి. కాగితాన్ని వైర్-మెస్ మీల్స్ ను కవచం చేయవచ్చు. ఇది విద్యుత్-అయస్కాంత జోక్యం మరియు పికవ్ నిరోధిస్తుంది. రెండు మరియు మూడు కోర్డు తో unshielded తీగలు ఉన్నాయి.

4. There are coaxial cables which are used as connectors . A coaxial cable with BNC Connector on one end and crocodile clips on the other are used for feeding the signal from Function Generators to the circuit under test. A coaxial cable with BNC Connector on one end and oscilloscope probes or crocodile clips on the other are used for feeding the signal from the circuit under test to the oscilloscope.

4. కనెక్టర్లకు ఉపయోగించే కోక్కియల్ తంతులు ఉన్నాయి. మరొక వైపు BNC కనెక్టర్ తో ఒక ఎకాక్కక కేబుల్ మరియు ఇతర న మొసలి క్లిప్ వంక్షన్ జనరేటర్లు నుండి

సిగ్నల్ పరీక్ష కోసం సర్క్యూట్ తినే కోసం ఉపయోగిస్తారు. ఒక చివర మరియు ఒస్పిన్లోస్సైప్ ఏరోబ్స్ లేదా మొసలి క్లిఫ్టో BNC కనెక్టర్ తో ఒక ఏకాక్షక కేబుల్ పరీక్షలో సర్క్యూట్ నుండి ఒస్పిన్లోస్సైప్ సిగ్నలును తీవ్రంగా ఉపయోగిస్తారు.

Procedure:

- Set up the component in the breadboard which has to be tested & probed by the multimeter as well as C.R.O.
- First of all we calculate the theoretical value of resistor through colour coding and then obtain practical value through multimeter.
- Next we find the I-V characteristic curve i.e forward and reverse characteristics of diode with the help of C.R.O.

విధానము:

- మంచీటర్ మరియు సి.ఆర్.ఒ.
- మనం అంతరంగిక రంగు కోడింగ్ ద్వారా మండల యొక్క సిథ్రాంత విలువను మళ్ళిమీటర్ ద్వారా ప్రాక్షికల్ విలువను పొందడం కంటే లెక్కించవచ్చు.
- I-V లక్షణాల వక్రత తరువాత మేము C.R.O యొక్క సహాయంతో ఉయోడ్ యొక్క ఫార్మాల్ మరియు రివర్స్ లక్షణాలు.

Resistances:

1. **Carbon Film Resistances:** There is a carbon film deposited on the former. These are the cheapest and most widely used resistances. The resistances are given in colour codes. Colour code is Gray, White, Violet ,Blue ,Green, Yellow, Orange, Red Brown and Black. These stand for 9,8,7,6,5,4,3,2,1 and 0 respectively.

The rest two bands on the left give tens and units. The third band gives the exponent to the base 10.

కార్బన్ ఫిల్మ్ రెజిస్టర్స్: మాజీ కార్బన్ ఎల్ఎమ్ డిపాజిట్ చేయబడింది. ఈ చొక్కెన మరియు అత్యంత విస్తరించా ఉపయోగించే నిరోధకతలను ఆర్క్ చేస్తుంది. నిరోధకాలు రంగు సంకేతాలు ఇవ్వబడ్డాయి.

రంగు కోడ్ గీర్, వైట్, వైలెట్, బ్లూ, గీర్న్, పసుపు, ఆరెంజ్, రెడ్ బీరోన్ అనిల్ బ్లాక్. వరుసగా 9,8,7,6,5,4,3,2,1 మరియు 0 కోసం ఈ షాంట్.

ఎదుమహైపు మిగిలిన రెండు బ్యాండ్లు పదుల మరియు యూనిట్లను ఇస్తాయి. మూడువ బ్యాండ్ బేస్ 10 కి ఫూతాంశం ఇస్తుంది.

Fourth band gives the tolerance. Golden Band gives 5% and Silver Band gives 10% tolerance.

S.No	1 st ,2 nd ,3 rd and 4 th band of colours	Nominal Value (Q)	Practical Value (Q)	Tolerance (± %)	Percentage Error
1	Yellow. Violet. Orange. Sliver	47k	47.2k	10	0.423
2	Red. Violet. Red' Gold	2.7k	2.748k	5	1.74G

The resistances have power rating and tolerance. Power rating tell the maximum power dissipation permitted. These are generally 1/4W or 1/2W rating in carbon lm resistances.

The fourth band tells the tolerance. Zero Tolerance resistance is a precision resistance. Less than 1% tolerance is close tolerance component. More than Vlu tolerance is a wide tolerance component,

నిరోధకాలు శక్తి రేటింగ్ మరియు సహనం కలిగి ఉంటాయి. పవర్ రేటింగ్ గరిష్ట విధ్వంత దుర్యానియోగం అనుమతి చెబుతుంది. ఇవి సాధారణంగా 1 / 4W లేదా 1 / 2W కార్బన్ LM నిరోధకతలో ఉంటాయి.

నాటవ బ్యాండ్ సహనం చెబుతుంది. జోర్ టోలరేన్స్ నిరోధకత ఖచ్చితత్వ నిరోధకత. 1% సహనం కంచే ఫైన్ దగ్గరగా సహనం భాగం. Vlu సహనం కంచే ఎక్కువ విస్తృత సహనం భాగం,

2. Thin Film Resistances: Thin Film Resistances are made of Nichrome which is 80% Nickel and 20% Chromium alloy. These are of 0.1% tolerance and the temperature coefficient of resistance(t.c.r) is 100 parts per million per degree centigrade (PPM/°C). These are also called precision resistances.

2. ధిన్ ఫిల్మ్ నిరోధకతలు: సన్నని చలనచిత్ర నిరోధకతలను నిచ్ రోమ్ తయారు చేస్తారు, ఇది 80% నికెల్ మరియు 20% కోమియం మిశ్రమం. ఇవి 0.1% సహనం మరియు ప్రతిఫుటన (t.c.r) యొక్క ఉష్ణోగ్రత కోడి డిగ్రీ సెంటిగ్రేడ్ శాతం (PPM / ° C) కు 100 భాగాలు. వీటిని ఖచ్చితమైన నిరోధకాలుగా పిలుస్తారు.

3. CERMETS are lm resistances where ceramic and metal 1ms are used. These are also of 0.1% tolerance and zero t.c.r. Ceramic has a negative t.c.r. and Metal has positive t.c.r. Hence a proper combination of Ceramic and Metal gives zero t.c.r. These are truly

precision components used in Instrumentation.

3. **CERMETS** అనేది సిఎంమిక్ మరియు మెటల్ 1ms డపయోగించిన LM నిరోధకాలు. వీటిలో 0.1% సహనం మరియు సున్నా t.c.r. సిరామిక్ ప్రతికూల t.c.r. మరియు మెటల్ అనుకూల t.c.r. అందువల్ల సిరామిక్ మరియు మెటల్ యొక్క సరైన కలయిక సున్నా t.c.r. ఇవి ఇస్ట్రుషన్ మెంచేషన్ డపయోగించిన నిజంగా ఖచ్చితమైన భాగాలు.
4. **Wire Wound Resistances:** These are power resistances which can go up to 100W maximum power dissipation. These are green in colour and robust in appearance.
4. వైర్ గాయం నిరోధకాలు: ఈ శక్తి నిరోధకాలు 100W గరిష్ట శక్తి దుర్వినియోగం వరకు వెళ్ళే. ఈ రంగులో ఆకుపచ్చ రంగులో కనిపిస్తాయి
5. **Variable Resistances:** These are carbon track potentiometers and Rheostats. Carbon track resistances are used in Electronics Lab and are of less than 1W rating. Rheostats are used in Electrical Engineering Labs and can go up to 1000W. Rheostat are made of Cu/Ni or Ni/Cr alloy of low t.c.r..

5. వేరియబుల్ నిరోధకాలు: ఇవి కార్బన్ టీర్స్ ప్రాచెష్టిమీమీటర్లు మరియు రియోషాట్స్. ఎలక్ట్రానిక్స్ ల్యాబ్లో కార్బన్ టీర్స్ నిరోధకాలు డపయోగించబడతాయి మరియు ఇవి 1W రేటింగ్ కంచే తక్కువగా ఉంటాయి. ఎలక్ట్రికల్ ఇంజనీరింగ్ ల్యాబ్స్ రీయోషాట్స్ డపయోగించబడతాయి మరియు 1000W వరకు వెళ్ళవచ్చు. Rheostat తక్కువ t.c.r యొక్క Cu / Ni లేదా Ni / Cr మిశ్రమం తయారు చేస్తారు

In Carbon Track Potentiometer there is a carbon track on which a wiper sweeps from one end to the other. The two terminals connected to the two ends of the carbon track give a fixed resistance while the resistance between one of the end terminals and the terminal connected to the wiper is a variable resistance.

కార్బన్ టీర్స్ Potentiometer లో ఒక కార్బన్ టీర్స్ ఉంది, ఇది ఒక వైపర్ తుడుచుకుని ఒక చివర నుండి మరొక వైపు. కార్బన్ టీర్స్ యొక్క రెండు చివరలతో అనుసంధానించబడిన రెండు చెర్కెనల్ని xed ప్రతిష్టమంగా అందిస్తాయి, తుది చెర్కెనల్ని ఒకదానికొకటి నిరోధకత మరియు వైపర్కు కలుపబడిన చెర్కెనల్ ఒక వేరియబుల్ నిరోధకత.

Capacitor:

1. **Ceramic Disc Capacitances:** These are the cheapest and most widely used capacitances. The values are given as 103. 103 means 10×10^3 pF (pF is called PUF). This is $10^{-8} F = 0.01 \text{ pF}$.

సిరామిక్ డిస్క్ కాపసిచెన్స్: ఇవి చోక్‌న మరియు విస్తృతంగా ఉపయోగించబడే కాప్యూసిచెన్స్. విలువలు 103. 103 అంటే 10×10^3 pF (పిఎఫ్ పియుఎఫ్ అని పిలుస్తారు). ఇది $10^{-8} F = 0.01 \text{ pF}$.

2. Paper/Mica Capacitances.
3. **Polyesterene Capacitances:** These are low loss angle high quality capacitances.

2. పేపర్ / మైకా కాపసిచెన్స్.

3. పాలిషైరాన్ కాపసిచెన్స్: ఇవి తక్కువ నష్టం కోటం అధిక నాణ్యత సామర్థ్యాలు.

I, **Electrolytic Capacitances:** The large magnitude of capacitances more than $1 \mu\text{F}$ up to $1000 \mu\text{F}$ can be realized by electrolytic Capacitances. These are polar capacitances. The polarity of the DC Voltage applied should be correct so that the electrolyte between the electrodes act like dielectric. If the polarity is reversed then it becomes a conductor.

విద్యుద్విష్టపణ కాపసిచెన్స్: $1000 \mu\text{F}$ కు $1 \mu\text{F}$ కంటే ఎక్కువ సామర్థ్యాలు ఉండడంతో విద్యుత్ కాపసిచెన్స్ ద్వారా గ్రహించవచ్చు. ఇవి ధీరువ సామర్థ్యాలు. DC వోల్టేజ్ యొక్క ధీరువణత సరిగ్గా ఉండాలి, తద్వారా ఎలక్ట్రోడ్ మధ్య విద్యుద్విష్టపణ విద్యుద్వాహకత వంటిది. ధీరువణత మారిపోయి ఉంటే అది ఒక కండక్టర్ అవుతుంది.

4. **Variable Capacitances:** Gang Capacitances- these are air-gap capacitances used as tuning capacitances in Radio-Broadcast Receivers. Trimmers and Padders are used for alignment of the tuned circuits in Radio Receivers.
4. వేరియబుల్ కాపసిచెన్స్: గ్యాంగ్ కాపసిచెన్స్- ఇవి రేడియో-బోడ్జుప్పు రిస్వరఫల్ ట్యూనింగ్ కెపాసిటెన్సుల వాయు-గ్యాప్ కెపాసిచెన్స్. రేడియో రిస్వరఫల్ ట్యూఫ్ సర్క్యూట్ల అమరిక కోసం టీరిమ్యూర్న్ మరియు పాషర్లు ఉపయోగిస్తారు.

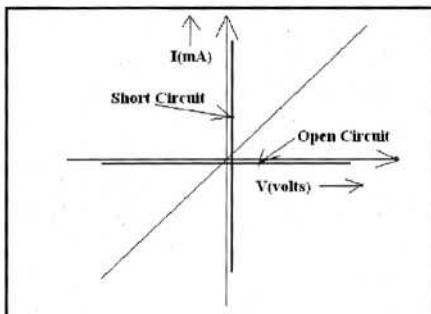


Figure 7.1: VI Characteristics of a resistor

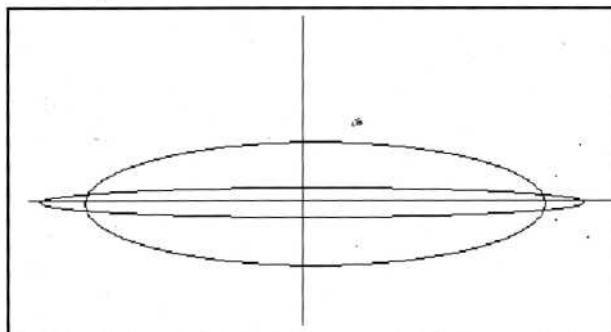


Figure 7.2: IV Characteristics of a Capacitor

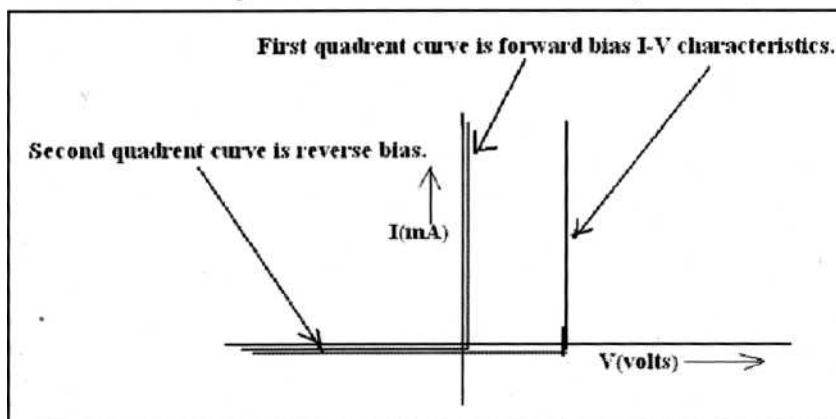


Figure 7.3: IV Characteristics of a Diode. In the First Quadrant we see the forward bias and cut off voltage.

The cut off Voltage For Germanium diode it is 0 Volts whereas for Silicon Dioili it is 0.5 V. But for LED it is 1.2V as it is a compound semiconductor.

జెర్నియం దయాడ్ కోసం వోల్టేజ్ కట్ 0 ఒట్లు అది సిలికాన్ డియాలి కోసం 0.5 v అయితే, LED కి ఇది ఒక సమ్మంట్ సెమ్కండ్షన్ గా 1.2v గా ఉంటుంది.

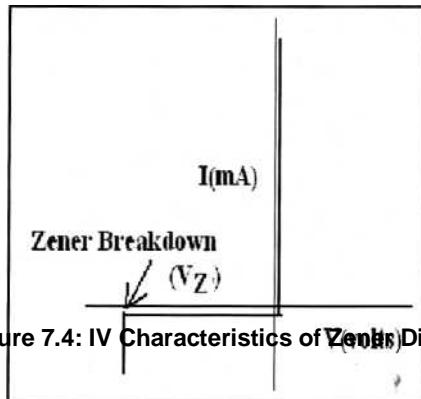


Figure 7.4: IV Characteristics of Zener Diode.

Zener Diode operates in Reverse Bias and the voltage regulation occurs because of zener breakdown.

జెనర్ దయాడ్ రివర్స్ బయాస్ పనిచేస్తుంది మరియు జెనర్ బోర్డ్కౌన్ కారణంగా వోల్టేజ్ నియంత్రణ జరుగుతుంది.

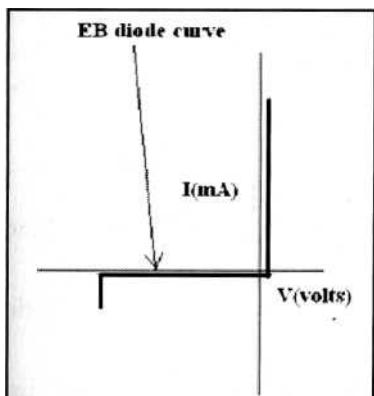


Figure 7.5: EB Diode IV Characteristics
EB Diode behaves like a Zener Diode.
Because of heavy doping

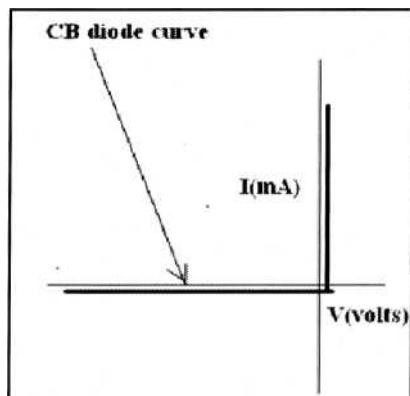


Figure 7.6: CB Diode IV Characteristics
CB diode behaves like classical diode.
Because of low doping

BASIC POWER SUPPLY:

Parts of a Power Supply- A DC Power Supply Unit (commonly called a PSU) deriving power from the AC mains (line) supply performs a number of tasks:

1. It changes (in most cases reduces) the level of supply to a value suitable for driving the load circuit.

2. It produces a DC supply from a pure AC wave.

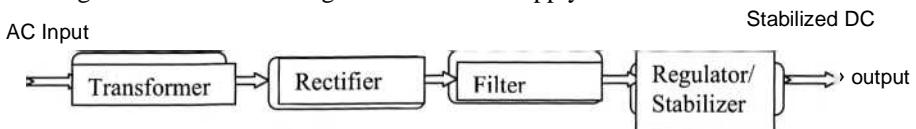
f It prevents any AC from appearing at the supply output.

విద్యుత్ సరఫరాల భాగాలు- DC పవర్ స్టేట్ యూనిట్ (సామాన్యంగా PSU అని పిలుస్తారు) AC మెయిన్ (లైన్) సరఫరా నుండి శక్తిని పొందడం అనేక పనులను చేస్తుంది:

1. లోడ్ సర్క్యూట్లు నడవడానికి తగిన విలువకు సరఫరా ఫోయి (చాలా సందర్శక్తి తగినట్టంది) ఇది మారుతుంది.

2. ఇది స్వచ్ఛమైన AC వేవ్ నుండి DC సరఫరాను ఉత్పత్తి చేస్తుంది.

f ఇది ఏ అవుట్టుట్టు అవుట్టుట్టు అవుట్టుట్టు వధ్య కనిపించకుండా నిరోధిస్తుంది.


11, It will ensure that the output voltage is kept at a constant level, independent of changes in:

- The AC supply voltage at the supply input.
- The Load current drawn from the supply output.
- Temperature.

ఇది అవుట్టుట్టు వోల్టేజ్ స్టిరమైన ఫోయిలో ఉంచుతుంది, దీనిలో మార్పులతో స్వతంత్రంగా ఉంటుంది:

- సరఫరా ఇన్పుట్ వధ్య AC సరఫరా వోల్టేజ్.
- సరఫరా ఉత్పత్తి నుండి దీరా అయిన ప్రస్తుత లోడ్.
- ఉపాయాలు.

The following is the basic block diagram of a Power Supply:

Transformer stage:

The Transformer

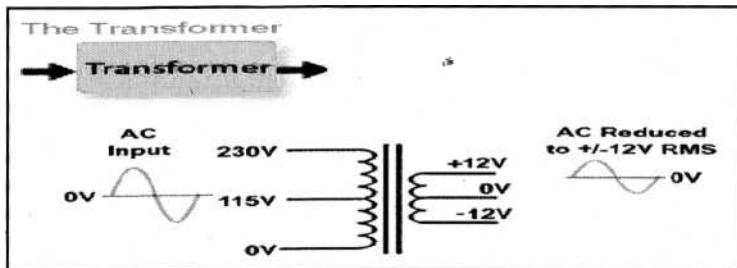


Figure 7.7: Typical Input Transformer

In a basic power supply the input power transformer has its primary winding connected to the mains

(line) supply. A secondary winding, electro-magnetically coupled but electrically isolated from the

primary is used to obtain an AC voltage of suitable amplitude, and after further processing by the

PSU, to drive the electronics circuit it is to supply.

The transformer stage must be able to supply the current needed. If too small a transformer is used,

it is likely that the power supply's ability to maintain full output voltage at full output current will be impaired. With too small a transformer, the losses will increase dramatically as full load is placed on the transformer.

As the transformer is likely to be the most costly item in the power supply unit, careful consideration must be given to balancing cost with likely current requirement.

There may also be a need for safety devices such as thermal fuses to disconnect the transformer if overheating occurs, and electrical isolation between primary and secondary windings, for electrical safety.

ఒక ప్రాథమిక విద్యుత్ సరఫరాలో ఇన్వాటర్ పవర్ టోనాన్సిర్ దాని ప్రాథమిక వైఫింగ్ మెయిన్సు కనెక్ట చేసింది

(లైన్) సరఫరా. ద్వారా మూసివేత, ఎలెక్ట్రో-అయస్కాంత కపుల్ కానీ విద్యుత్ నుండి వేరుచేయబడినది

ప్రాథమిక వాల్యూమ్సు తగిన వ్యాప్తి యొక్క AC వోల్టేజ్సు పొందటానికి ఉపయోగించబడుతుంది, మరియు ఫర్పర్ ప్రాసెసింగ్ తర్వాత

The Rectifier Stage

→ Rectifier →

పిఎస్స్యూ, ఎల్జ్యూనిక్ సర్క్యూట్స్ పంపిణీ చేయడం.

టీరానాపుర్ముర్ దశ ప్రస్తుత అవసరాలను తీర్పగలగాలి. చాలా చిన్న టీరానాపుర్ముర్ వాడుతుంచే,

అది విద్యుత్ ఉత్పత్తి యొక్క పూర్తి సామర్థ్యపు వోల్టేజ్స్ నిర్ద్ధక ఉత్పత్తి వద్ద నిర్వహించడానికి సామర్థ్యం కలిగి ఉంటుంది. చాలా చిన్న టీరానాపుర్ముర్ తో, నష్టాలు పూర్తిగా లోడ్ అవుతాయి, టీరానాపుర్ముర్ పూర్తి లోడ్ ఉంచబడుతుంది. విద్యుత్ సరఫరా విభాగంలో టీరానాపుర్ముర్ అత్యంత ఖరీదైన వస్తువుగా ఉండటం వలన, ప్రస్తుత అవసరాన్ని బ్యాలెన్స్ చేయాలిన అవసరంతో జాగ్రత్తగా పరిగణనలోకి తీసుకోవాలి.

ఉపపు మండల వంటి భద్రతా పరికరాలకు కూడా అవసరమవుతుంది, ఇది వేడిమికి జరిగితే టీరానాపుర్ముర్ డిస్కానెక్ష్ చేయడానికి, మరియు ఎల్క్రోలియల్ భద్రత కోసం పేరాధమిక అనీల్ సెకండరీ విండింగుల మధ్య విద్యుత్ ఒంటరిగా ఉంటుంది.

Three types of silicon diode rectifier circuit may be used, each having a different action in the way that the AC input is converted to DC. These differences are illustrated in Figures below.

సిలికాన్ డయోడ్ రెసిప్లైయర్ సర్క్యూట్ యొక్క మూడు రకాలు ఉపయోగించబడతాయి, ప్రతి ఒక్కటీ AC ఇన్పుట్ DC కి మార్చబడిన విధంగా వేరిక చర్యను కలిగి ఉంటుంది. ఈ తేడాలు కీరింద గణాంకాలు లో వివరించారు.

WORKING OF HALF WAVE RECTIFIER

HalfWave Rectification

A single silicon diode may be used to obtain a DC voltage from the AC input as shown in Figure. This system is cheap but is only suitable for fairly non-demanding uses. The DC voltage produced by the single diode is less than with the other systems, limiting the efficiency of the power supply, and the amount of AC ripple left on the DC supply is generally greater.

The half wave rectifier conducts on only half of each cycle of the AC input wave, effectively blocking the other half cycle, leaving the output wave shown in Fig. below. As

the average DC value of one half cycle of a sine wave is 0.637 of the peak value, the average DC value of the whole cycle after half wave rectification will be 0.637 divided by 2, because the average value of every alternate half cycle where the diode does not conduct, will of course be zero. This gives an output of:

ఒక సిలికాన్ డయోడు డిస్ట్రిబ్యూషన్ ఆర్టిఫిషియల్ నుండి మూర్తిలో చూపించిన విధంగా ఉపయోగించవచ్చు. ఈ వ్యవస్థ చోకగా ఉంటుంది కానీ చాలా డిమాండ్ లేని ఉపయోగానికి మాత్రమే సరిపోతుంది. సింగిల్ డయోడ్ ద్వారా ఉత్పత్తి చేయబడిన డిస్ట్రిబ్యూషన్ ఆర్టిఫిషియల్ వోల్టేజ్ తక్కువగా ఉంటుంది, విద్యుత్ సరఫరా యొక్క సామర్థ్యాన్ని పరిమితం చేయడం మరియు డిస్ట్రిబ్యూషన్ ఆర్టిఫిషియల్ ఎడమవైపు మొత్తం సాధారణంగా ఉంటుంది.

సగం వేవ్ రెక్టిఫైయర్ ఆర్టిఫిషియల్ వేవ్ యొక్క ప్రతి చక్కంలో సగం మాత్రమే నిర్వహించబడుతుంది, సమర్థవంతంగా మిగిలిన సగం చక్కరాన్ని అణ్ణుకుంటుంది, అంజోర్లో చూపించిన అవట్టువీట్ వేవ్ను వదిలివేస్తుంది. సైన వేవ్ యొక్క సగం చక్కం యొక్క సగటు డిస్ట్రిబ్యూషన్ విలువ 0.637 శిఖరం విలువలో ఉండగా, సగం తరంగ సరిదిద్యుట తర్వాత మొత్తం చక్కం యొక్క సగటు డిస్ట్రిబ్యూషన్ విలువ 0.637/2 చేత విభజించబడుతుంది, ఎందుకంచే ప్రతి ప్రత్యామ్నాయ సగం చక్కం యొక్క సగటు విలువ డయోడ్ నిర్వహించదు, కోర్సు యొక్క సున్నా అవుతుంది. ఇది ఒక ఉత్పత్తిని ఇస్తుంది:

$$V_{pk} \times 0.318$$

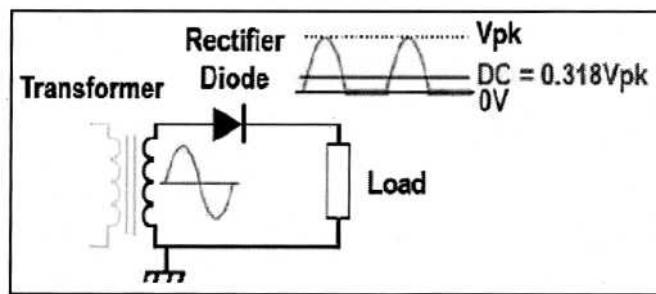


Figure .78: Half wave Rectifier

This figure is approximate, as the amplitude of the half cycles for which the diode Conducts will also be reduced by about 0.6V due to the forward voltage drop (tbfc

depletion layer p.d.) of the silicon rectifier diode. This additional voltage drop may be insignificant when large voltages are rectified, but in low voltage power supplies where the AC from the secondary winding of the mains transformer may be only a few volts, (less than 0.6V drop across the diode junction may have to be compensated for, by having a slightly higher transformer secondary voltage.

Half wave rectification is not very efficient at producing DC from a 50Hz or 60Hz AC input. In addition the gaps between the 50 or 60Hz diode output pulses make it difficult to remove the AC ripple remaining after rectification.

పిగర్ .78: హాఫ్ వేవ్ రెక్టిఫైయర్ సివికాన్ రికిన్ఫైయర్ డయోడ్ యొక్క ఫార్మార్స్ వోల్టేజ్ డీర్ప్ (tbfc క్లీషిట పార p.d.) కారణంగా డయోడ్ నిర్వహిస్తున్న సగం చక్కరాల వ్యాపి కూడా 0.6V చేత తగ్గించబడుతుంది. పెద్ద వోల్టేజ్ సరిదిద్దబడినప్పుడు ఈ అదనపు వోల్టేజ్ డీర్ప్ చాలా తక్కువగా ఉంటుంది, కానీ తక్కువ వోల్టేజ్ విద్యుత్ సరఫరాలలో, మెయిన్స్ టీరానాప్రూర్ యొక్క ద్వితీయ మూసివేత నుండి డై ఎసీ మాత్రమే కొన్ని వోల్ట్లుగా ఉండవచ్చ (డయోడ్ జంక్షన్ అనారోగ్యం 0.6 వ డీర్ప్ ఉంటుంది కొద్దిగా ఎక్కువ టీరానాప్రూర్ సెకండరీ వోల్టేజ్ కలిగి ఉంది. నేను ఒక 50Hz లేదా 60Hz AC ఇన్పుట్ నుండి DC ని ఉత్పత్తి చేయడంలో సరళమైన వేవ్ సరిదిద్దడం చాలా సమర్థవంతమైనది కాదు. అదనంగా, 50 లేదా 60Hz డయోడ్ అవుట్టుట్ పప్పుల మధ్య ఖాళీలు సరిదిద్దడం తర్వాత మిగిలివున్న AC అలలు తోలగించడానికి మల్చుర్ కష్టంరం చేస్తుంది.

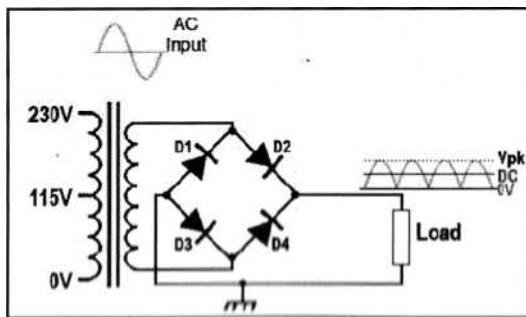
FULL WAVE RECTIFICATION

If a transformer with a centre tapped secondary winding is used, more efficient full wave rectification can be used. The centre-tapped secondary produces two anti-phase outputs, as shown in Fig below:

Figure 7.9: Full wave rectifier

If each of these outputs is ‘half wave rectified’ by one of the two diodes, with each diode conducting on alternate half cycles, two pulses of current occur at every cycle, instead of once per cycle in half wave rectification. The output frequency of the full wave rectifier is therefore twice the input frequency. This effectively provides twice the output voltage of the half wave circuit, $V_{pk} \times 0.637$ instead of $V_{pk} \times 0.318$ as the ‘missing’ half cycle is now rectified, reducing the power wasted in the half wave circuit. The higher output frequency also makes the smoothing of any remaining AC ripple easier.

ప్రతీ ఉయోడ్ ప్రత్యామ్నాయ సగం చక్కరాలపై ప్రయోగాత్మకంగా రెండు ఉయోడ్లో ఒకచైన 'సగం వేవ్ సరిదిద్దుతుంది', ప్రతి చక్కం ప్రతి చక్కంలో ప్రతి రెండు పప్పులు జరుగుతాయి. హర్టి వేవ్ రెక్షిఫయర్ యొక్క అవటువుట్ ఫీర్కెఫ్స్ కాబట్టి రెండుసార్లు ఇన్నిట్ ఫీర్కెఫ్స్ నీ. సగం వేవ్ సర్చ్యూట్లో చెప్పుకున్న శక్కిని తగ్గించడం ద్వారా సగం వేవ్ సర్చ్యూట్ యొక్క రెండుసార్లు అవటువుట్ వోల్టేజ్, $V_{pk} \times 0.618$ బదులుగా $V_{pk} \times 0.318$ యొక్క అవటువుట్


వోల్టేజ్‌ను సమర్థవంతంగా అందిస్తుంది. అధిక అవుట్యూట్ ఫరీక్వెన్సీ కూడా ఏమైనా మిగిలిన A ను సులభతరం చేస్తుంది (నేను అలాల సులభతరమవుతుంది.

Although this full wave design is more efficient than the half wave, it requires a centre tapped (and therefore more expensive) transformer.

సగం వేవ్ కంచే ఈ పూర్తి వేవ్ డిజైన్ మరింత సమర్థవంతంగా ఉన్నప్పటికీ, దీనికి కేంద్రం (కాబట్టి ఖరీదైనది) టీరానాన్నార్గురు అవసరం.

THE BRIDGE RECTIFIER

The full wave bridge rectifier uses four diodes arranged in a bridge circuit as shown in Fig. below to give full wave rectification without the need for a centre-tapped transformer. An additional advantage is that, as two diodes (effectively in series) are conducting at any one time, the diodes need only half the reverse breakdown voltage capability of diodes used for half and conventional full wave rectification. The bridge rectifier can be built from separate diodes or a combined bridge rectifier can be used

పూర్తి వేవ్ బెరిట్డ్ రిక్లిఫయర్ ఒక వంతెన సర్వ్యూట్ ఏర్పాటు చేసిన నాలుగు డయోడును ఉపయోగిస్తుంది, అంతేకాక సెంటర్ ట్యూప్ టీరానాన్నార్గు అవసరం లేకుండా పూర్తి వేవ్ సరిదిధులకు కీరింద ఇవ్వబడినది. ఒక అదనపు ప్రయోజనం ఎమిటంచే, ఏమైనా సమయాల్లో రెండు డయోడ్లు (సమర్థవంతంగా సిరీప్లో గాలి) నిర్వహిస్తుంది, డయోడుకు సగం మరియు సాంప్రదాయిక పూర్తి వేవ్ సరిదిధడానికి ఉపయోగించిన డయోడ్ల సగం రివర్స్ బెర్కెస్ వోల్టేజ్ సామర్థ్యం అవసరం. ప్రత్యేక డయోడ్ నుండి లేదా వంతెన రీక్లిఫయరు తయారు చేయగలదు

The current paths on positive and negative half cycles of the input wave are shown in Figures below . It can be seen that on each half cycle, opposite pairs of diodes conduct, but the current through the load remains in the same polarity for both half

ఇన్వాటర్ వేవ్ యొక్క సానుకూల మరియు ప్రతికూల సగం చక్కరాలపై ప్రస్తుత మార్గాలు కీరింద ఉన్న గణాంకాలు చూపబడ్డాయి. ఇది ప్రతి సగం చక్కంలో, దయోధ్ ప్రవర్తనకు వ్యతిరేక జంటలు, కానీ లోడ్ ద్వారా ప్రస్తుత భాగం రెండింటికీ అదే ధీరువణంలో ఉంటుంది.

cycles.

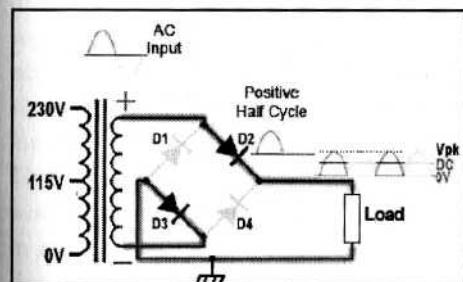


Figure 7.11: Current Flow on positive half cycle

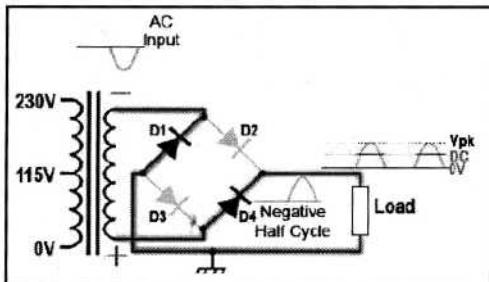


Figure 7.12: Current Flow on negative half cycle

FILTER COMPONENTS

A typical power supply filter circuit can be best understood by dividing the circuit into two parts, the reservoir capacitor and the low pass filter. Each of these parts contributes to removing the remaining AC pulses, but in different ways.

ఈక సాధారణ విద్యుత్ సరఫరా ఫిల్టర్ సర్క్యూట్టును సర్క్యూట్టును రెండు భాగాలు, రిజర్వ్ కపాసిటర్ మరియు తక్కువ పాస్ ఫిల్టర్ విభజించడం ద్వారా ఉత్తమంగా అర్థం చేసుకోవచ్చు. ఈ భాగాలలో మిగిలినవి మిగిలిన AC పప్పులను తొలగించటానికి దోహదం చేస్తాయి, కానీ వివిధ రకాలుగా.

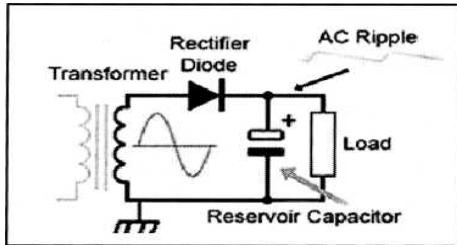


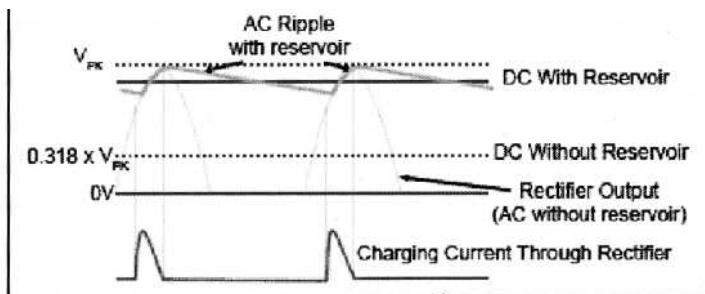
Figure 7.13: Reservoir Capacitor

Fig. above shows an electrolytic capacitor used as a reservoir capacitor, so called because it acts as a temporary storage for the power supply output current. The hswtifier diode supplies current to charge a reservoir capacitor on each cycle of the Input wave. The reservoir capacitor is a large electrolytic, usually of several hundred or even a thousand or more microfarads, especially in mains frequency PSUs. This very litl gc value of capacitance is required because the reservoir capacitor, when charged, must provide enough DC to maintain a steady PSU output in the absence of an input lilt rent; i.e. during the gaps between the positive half cycles when the rectifier is not Innducting.

Fig. పైన ఒక విద్యుత్తు సరఫరా కెపాసిటిఫర్ ఒక రిజర్వ్యాయర్ కెపాసిటిఫర్ వాడబడుతుంది, అందుచే ఇది విద్యుత్ సరఫరా అవుటుప్పు ప్రస్తుత కోసం తాత్కాలిక నిల్వగా పనిచేస్తుంది. ఇన్పుట్ తరంగ యొక్క ప్రతి చక్రంలో ఒక జలాశయాల కెపాసిటర్లు చార్ట్ చేసేందుకు ప్రస్తుతం హెష్టిప్లైయర్ డయాడ్ సరఫరా చేస్తుంది. రిజర్వ్యాయర్ కెపాసిటర్ ఒక పెద్ద విద్యుద్యోష్టేషన్, సాధారణంగా వందల లేదా ఫ్యాచ్ వయ్య లేదా అంతకంచే ఎక్కువ మైక్రోఫారడ్స్, ముఖ్యంగా మెయిన్ ఫరీక్స్ పసు లలో. ఈ లోని జిసి విలువ కెపాసిటన్ అవసరం ఎందుకంచే రిజర్వ్యాయర్ కెపాసిటర్, చార్ట్ చేస్తున్నప్పుడు, ఇన్పుట్ లిల్ అధేకు లేనప్పుడు ప్లిరమైన పసు ఉత్పత్తిని నిర్వహించడానికి తగినంత DC ని అందించాలి; అనగా సకశేరు సగం చక్కరాల మధ్య అంతరాన్ని సరిదిధిస్తున్నప్పుడు ప్రత్యామ్మాయం కాదు.

The action of the reservoir capacitor on a half wave rectified sine wave is shown in Figure below. During each cycle, the rectifier anode AC voltage increases towards V_{pk} . At some point close to V_{pk} the anode voltage exceeds the cathode voltage, the rectifier conducts and a pulse of current flows, charging the reservoir capacitor to the value of V_{pk} .

Figure 7.14: Reservoir capacitor action


సగం తరంగ స్కరియంలో సెన్ వేవ్స్ రిజర్వ్యూయర్ కెపాసిటర్ చర్య క్రింద ఉన్న చిత్రంలో చూపబడింది. ప్రతి చక్రంలో, రిక్రిప్లైయర్ యానోడ్ AC వోల్టేజ్ V_{pk} వైపు పెరుగుతుంది. V_{pk} కు దగ్గరగా ఉన్న కొన్ని పాయింట్ వద్ద ఆనోడ్ వోల్టేజ్ కాథోడ్ వోల్టేజ్‌ను మించిపోయింది, రిక్రిప్లైయర్ కలుస్తుంది మరియు ప్రస్తుత ప్రవాహాల పల్న, రిజర్వ్యూయర్ కెపాసిటరును V_{pk} విలువకు చార్జ్ చేస్తుంది.

Of course, even though the reservoir capacitor has large value, it discharges as it supplies the load,

and its voltage falls, but not by very much. At some point during the next cycle of the mains input,

Once the input wave passes V_{pk} the rectifier anode falls below the capacitor voltage, the rectifier becomes reverse biased and conduction stops. The load circuit is now supplied by the reservoir capacitor alone (hence the need for a large capacitor).

The rectifier input voltage rises above the voltage on the partly discharged capacitor and the reservoir is re-charged to the peak value V_{pk} again.

మూర్టి 7.14: రిజర్వ్యూయర్ కెపాసిటర్ చర్య

అయితే, జలాశయాల కెపాసిటర్ పెద్ద విలువను కలిగి ఉన్నప్పటికీ, అది బయటను సరఫరా చేసే విధంగా విడుదల చేస్తుంది,

మరియు దాని వోల్టేజ్ వస్తుంది, కానీ చాలా కాదు. తదుపరి చక్రంలో కొన్ని పాయింట్లు వద్ద మెయిన్స్ ఇన్సుట్,

ఇన్సుట్ వేవ్ V_{pk} ను పౌన్స్ చేసిన తర్వాత, రెటిఫికర్ యూనిట్ కెపాసిటర్ వోల్టేజ్ కీరింద వస్తుంది, రికిన్పైయర్ రివర్స్ పష్టపాతంతో మరియు ప్రసరణ ప్లాప్ అవుతుంది. లోడ్ సర్క్యూట్ ఇప్పుడు రిజర్వ్యాయర్ కెపాసిటర్ మాత్రమే సరఫరా చేస్తుంది (అందుకే ఒక పెద్ద కెపాసిటర్ అవసరం).

Rectifier ఇన్సుట్ వోల్టేజ్ వోల్టేజ్ పై భాగంలో పాక్షికంగా డిస్కార్చ్ కెపాసిటర్ పై పెరుగుతుంది మరియు రిజర్వ్యాయర్ మళ్ళీ కొన విలువ V_{pk} కు తీరిగి చార్డ్ చేస్తారు.

AC Ripple

The amount by which the reservoir capacitor discharges on each half cycle is determined by the current drawn by the load. The higher the load current, the more the discharge, but provided that the current drawn is not excessive, the amount of tin AC present in the output is much reduced. Typically the peak-to-peak amplitude of the remaining AC (called ripple as the AC waves are now much reduced) would be no more than 10% of the DC output voltage.

The DC output of the rectifier, without the reservoir capacitor, is either 0.637 V_{pk} for full wave rectifiers, or 0.317 V_{pk} for halfwave. Adding the capacitor increases (lit DC level of the output wave to nearly the peak value of the input wave.

To obtain the least AC ripple and the highest DC level it would seem sensible in use the largest reservoir capacitor possible. There is a snag however. The capacitor supplies the load current for most of the time (when the diode is not conducting) This current partly discharges the capacitor, so all of the energy used by the load during most of the cycle must be made up in the very short remaining time during which the diode conducts in each cycle,

AC అలల

ప్రతి అర్ధ చక్రంలో రిజర్వ్యాయర్ కెపాసిటర్ డిశార్డెన్ ద్వారా తీసుకునే మొత్తం లోడ్ ద్వారా దీర్చా చేయబడుతుంది. అధిక లోడ్ ప్రస్తుత, మరింత ఉత్పాదక, కానీ ప్రస్తుత దీర్చా అధికం కాదు అందించిన, అవుట్టుట్ లో ప్రస్తుతం టీన్ AC మొత్తం ఉంది చాలా తగ్గింది. ప్రత్యేకంగా పీక్-టు-పీక్ వ్యాప్తి E మిగిలిన AC (DC AC తరంగాలను అలల అని పిలుస్తారు) ఇప్పుడు DC ఉత్పాదక వోల్టేజ్ 10% కంటే ఎక్కువ ఉండదు. రిజర్వ్యాయర్ కెపాసిటర్ లేకుండా డిఫిఫికర్ యొక్క DC ఉత్పత్తి, పూర్తి వేవ్ రెషిష్ట్రైయర్లకు 0.637 V_{pk} లేదా సగంవేవ్ కోసం 0.317 V_{pk} గా ఉంటుంది. కెపాసిటర్

పెంచుతుంది (జన్మట్ వేవ్ యొక్క దాదాపు కొన విలువకు అవుట్టుట్ వేవ్ యొక్క DC ఫోయిని వెలిగించడం.

కనీసం ఎసి అలల మరియు అత్యధిక DC ఫోయిని పొందటానికి అది అతిపెద్ద రిజర్వోయర్ కెపాసిటర్లు ఉపయోగించడంలో సరైనది అనిపించవచ్చు. అయితే ఒక స్నాగ్ ఉంది. కెపాసిట్యూఫ్ చాలా సమయాన్ని (దయోడ్ నిర్వహిస్తున్నపుడు) లోడ్ చేయగల ప్రస్తుత పరిమాణాన్ని సరఫరా చేస్తుంది, ఈ ప్రస్తుత ప్యాక్షికంగా కెపాసిటర్లు డిచార్ట్ చేస్తోంది, కనుక చాలా ఎక్కువ చక్రంలో చక్రం చాలా తక్కువగా ఉంటుంది. మిగిలిన సమయం dtu iiig wltii ఇది ప్రతి చక్రంలో ఉయోడ్ ప్రవాహం,

The formula relating charge, time and current states that:

$$Q=It$$

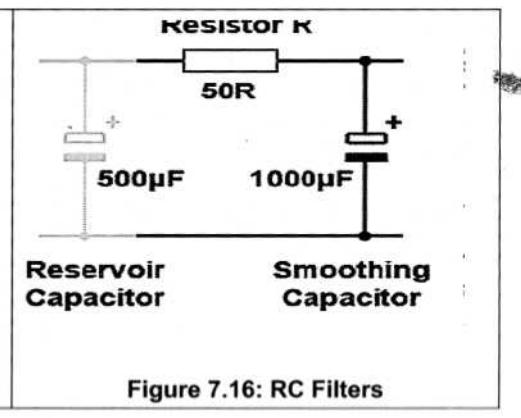
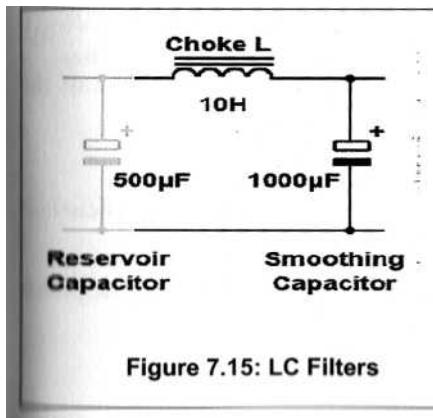
The charge (Q) on a capacitor depends on the amount of current (I) flowing for a time (t). Therefore the shorter the charging time, the larger current the diode must supply to charge it. If the capacitor is very large, its voltage will hardly fall at all between charging pulses; this will produce a very small amount of ripple, but require very short pulses of much higher current to charge the reservoir capacitor. Both the input transformer and the rectifier diodes must be capable of supplying this current. This means using a higher current rating for the diodes and the transformer than would be necessary with a smaller reservoir capacitor. There is an advantage therefore in reducing the value of the reservoir capacitor, thereby allowing an increase in the ripple present, but this can be effectively removed by using a low pass filter and regulator stages between the reservoir capacitor and the load.

This effect of increasing reservoir size on diode and transformer current should be born in mind during any servicing operations; replacing the reservoir capacitor with a larger value than in the original design “to reduce mains hum” may seem like a good idea, but could risk damaging the rectifier diode and/or the transformer.

With full wave rectification the performance of the reservoir capacitor in removing AC ripple is significantly better than with half wave, for the same size of reservoir capacitor, the ripple is about half the amplitude of that in half wave supplies, because in full wave circuits, discharge periods are shorter with the reservoir capacitor being recharged at twice the frequency of the half wave design.

ఒక కెపాసిటర్లు చార్ట్ (ర) అనేది ప్రస్తుత (I) సమయాన్ని (t) ప్రవహించే మొత్తం మీద ఆధారపడి ఉంటుంది. అందువల్ల చార్ట్టింగ్ సమయం తక్కువగా ఉండటంతో, పెద్ద ఉయోడ్ అది చార్ట్ చేయడానికి సరఫరా చేయాలి. కెపాసిటర్ చాలా పెద్దది

ఆయినట్టయితే, దాని వోల్టేజ్ పలున్న ఛార్టింగ్ చేసేంతవరకు అరుదుగా పడిపోతుంది; ఇది చాలా చిన్న మొత్తంలో అలలని ఉత్పత్తి చేస్తుంది, కానీ జలాశయాల కెపాసిటుర్ను ఛార్ట్ చేసేందుకు చాలా తక్కువ కాలపు పప్పులు అవసరమవుతాయి. ఇన్నట్ టీరానాపుర్కుర్ మరియు రెక్షిప్టెయర్ డయోడ్లు రెండూ ఈ కరెంట్ సరఫరా చేయగల సామర్థ్యాన్ని కలిగి ఉండాలి. దీనర్థం డయోడ్లు మరియు టీరానాపుర్కుర్ కోసం ఉన్నత ప్లాయి రేటింగ్సు ఉపయోగించడం అంటే ఒక చిన్న రిజర్వ్యాయర్ కెపాసిటుర్ ఆవసరం. రిజర్వ్యాయర్ కెపాసిటర్ రొమిక్ విలువను తగ్గించడంలో ప్రయోజనం ఉంటే, తద్వారా అలల ప్రవాహంలో పెరుగుదలని అనుమతించడం ద్వారా, అయితే జలాశయాల కెపాసిటర్ మరియు లోడ్ మధ్య తక్కువ పాస్ ఫిల్టర్ మరియు రెగ్యులేటర్ దశలను ఉపయోగించడం ద్వారా దీన్ని సమర్పించంగా తెలిగించవచ్చు.



డయోడ్ మరియు టీరాన్స్‌ఫ్రెక్చర్ ప్రవాహంపై రిజర్వ్‌యర్ పరిమాణాన్ని పెంచడం ఈ సర్వీసింగ్ కార్బకలాపాల సందర్భంగా మనస్సులో పుట్టాలి. రిజర్వ్‌యర్ కెపాసిటీ అనులు రూపకల్పనలో "మెయిన్ హామ్ తగ్గించడానికి" బదులుగా ఒక పెద్ద విలువ వలె కనిపించవచ్చు, ఇది మంచి ఆలోచనలు అనిపించవచ్చు, కానీ డీకోడియర్ డయోడ్ మరియు / లేదా టీరాన్స్‌ఫ్రెక్చర్ దెబ్బతీయగలవు.

పూర్తి వేవ్ సరిదిద్దటంతో రిజర్వ్యాయర్ కెపాసిటర్ యొక్క పనితీరు సగం వేవ్ కంటే చాలా తక్కువగా ఉంటుంది, అదే రిజర్వ్యాయర్ కెపాసిటర్ యొక్క పరిమాణంతో, సగం వేవ్ సరఫరాలో సగం అస్వప్తత ఉంటుంది, ఎందుకంటే పూర్తి వేవ్ సర్క్యూట్టలో, డిచాపర్ కాలాలు రిజర్వ్యాయర్ కెపాసిటర్ సగం వేవ్ డిజైన్ యొక్క రెండ్యులార్ పీర్కెన్స్ రీచార్ చేసున్నారు తో తక్కువ ఉంటాయి.

Low Pass Filters

Although a useable power supply can be made using only a reservoir capacitor to remove AC ripple, it is usually necessary to also include a low pass filter and/or a regulator stage after the reservoir capacitor to remove any remaining AC ripple and Improve the stabilisation of the DC output voltage under variable load conditions.

ఎని ట్రిపుల్ను తీసివేయడానికి ఒక రిజర్వ్యూర్ కెపాసిటర్ ఉపయోగించడం ద్వారా ఉపయోగించగలిగే శక్తిని సరఫరా చేయగలిగినప్పటికీ, రిజర్వ్యూర్ కెపాసిటర్ ఎద్దెనా మిగిలిన ఎని అలల తోలగింపు తర్వాత, తక్కువ పాస్ వదువోత మరియు / లేదా రెగ్యులేటర్ దశ కూడా ఉంటుంది. వేరియబుల్ లోడ్ పరిష్కారులలో DC ఉత్పత్తి వోల్టేజ్.

Either LC or RC low pass filters can be used to remove the ripple remaining after the reservoir capacitor. The LC filter shown in Fig. below is more efficient and gives better results than the RC filter shown in Figure but for basic power supplies, LC designs are less popular than RC, as the inductors needed for the filter to work efficiently at 50 to 120Hz need to be large and expensive laminated or toroidal core types. However modern designs using switch mode supplies, where any AC ripple is at much higher frequencies, much smaller ferrite core inductors can be used. The low pass filter passes low frequency, in this case DC (0Hz) and blocks higher frequencies, whether 50Hz or 120Hz in basic circuits or tens of kHz in switch mode designs. The reactance (XC) of the capacitor in the either of the filters is very low compared with the resistance of resistor R or the reactance of the choke XL at the ripple frequency. In RC designsthe resistance of R must be a fairly low value as the entire load current, maybe several amperes, must pass through it, generating a considerable amount of heat. A typical value would therefore be 50 ohms or less, and even at this value, a large wire wound resistor would normally need to be used. This limits the efficiency of the filter as the ratio between the resistance of R and the capacitor reactance will not be greater than about 25:1. This then would be the typical reduction ratio of the ripple amplitude. By including the low pass filter some voltage is lost across the resistor, but this disadvantage is offset by the better ripple performance than by using the reservoir capacitor alone.

The LC filter performs much better than the RC filter because it is possible to make the ratio between XC and XL much bigger than the ratio between XC and R. Typically the ratio in a LC filter could be 1:4000 giving much better ripple rejection than the RC filter. Also, since the DC resistance of the inductor in the LC filter is much less than the resistance of R in the RC filter, the problem of heat being generated by the large DC current is very much reduced in

LC filters. With a combined reservoir capacitor and low pass filter it is possible to remove 95% or more of the AC ripple and obtain an output voltage of about the peak voltage of the input wave. A simple power supply consisting of only transformer, rectifier, reservoir and low pass filter however, does have some drawbacks.

The output voltage of the PSU tends to fall as more current is drawn from the output. This is due to:

- The reservoir capacitor being discharged more on each cycle.
- Greater voltage drop across the resistor or choke in the low pass filter as current increases.

These problems can be largely overcome by including a regulator stage at the power supply output.

రిజర్వ్యూయర్ కెపాసిటర్ తర్వాత మిగిలిపోయిన అలలని లోలగించడానికి LC లేదా RC తక్కువ పాస్ ఫిల్టర్లను ఉపయోగించవచ్చు. Figure 1 చూపిన LC వదపోత మరింత సమర్థవంతంగా ఉంటుంది మరియు RC ఫిల్టర్ మూర్టిలో చూపించిన దాని కంచే మెరుగైన ఫలితాలను ఇస్తుంది కానీ పొరాధమిక శక్తి సరఫరా కోసం, LC నమూనాలు RC కంచే తక్కువగా ఉంటాయి, వదపోత కోసం అవసరమైన పేరేరేపకులు 50 నుండి 120Hz పెద్ద మరియు ఖరీదైన లామినేచెడ్ లేదా అంతరంగిక కోర్ రకాలుగా ఉండాలి. అయితే స్విచ్ మోడ్ సరఫరాలను ఉపయోగించి ఆధునిక నమూనాలు, ఎ AC అలలత చాలా ఎక్కువ పొనఃపున్యాల వద్ద ఉంది, చాలా చిన్న ఫెర్రరైట్ కోర్ ఇండక్షన్లు ఉపయోగించవచ్చు. తక్కువ పాస్ వదపోత తక్కువ పొనఃపున్యాన్ని, ఈ సందర్భంలో DC (0Hz) మరియు అధిక ఫీర్కెన్సీలను భూక్ చేస్తుంది, స్విచ్ మోడ్ రూపకల్పనలో పొరాధమిక సరూచ్యాట్లు లేదా పదుల kHz లో 50Hz లేదా 120Hz లేదో. ఫిల్టర్లోని కెపాసిటర్ యొక్క రియాక్షన్స్ (XC) నిరోధకం R యొక్క ప్రతిఫుటన లేదా అలల పొనఃపున్యంలో చౌక్ XL యొక్క ప్రతిచర్యతో పోలిస్తే చాలా తక్కువగా ఉంటుంది. R యొక్క రూపకల్పనలో R యొక్క ప్రతిఫుటన మొత్తం మొత్తం లోడ్ ప్రస్తుత అతి తక్కువగా ఉంటుంది, బహుశా అనేక ఆంపియర్లు, దాని గుండా వెళ్లాలి, గణనీయమైన స్థాయిలో వేడిని ఉత్పత్తి చేస్తుంది. అందువలన ఒక విలక్షణ విలువ 50 ohms లేదా తక్కువ ఉంటుంది, మరియు ఈ విలువలో కూడా, ఒక పెద్ద వైరు గాయం నిరోధకం సాధారణంగా

ఉపయోగించాల్సి ఉంటుంది. R యొక్క ప్రతిఫుటన మరియు కెపాసిటర్ రియాఫ్టన్ మధ్య నిష్పత్తి 25: 1 కన్నా ఎక్కువ ఉండదు కాబట్టి ఇది వడపోత సామర్థ్యాన్ని పరిమితం చేస్తుంది. ఈ తరువాత అలల వ్యాప్తి యొక్క సాధారణ తగ్గింపు నిష్పత్తి ఉంటుంది. తక్కువ వడపోత వడపోతతో సహా, కొన్ని వోల్టేజ్ మణికట్టు అంతటా పోతుంది, కానీ ఈ ప్రతికూలత రిజర్వ్యాయర్ కెపాసిటర్లు ఉపయోగించడం కంచే మెరుగైన అలల ప్రదర్శన ద్వారా భర్త చేస్తుంది. XC మరియు R మధ్య నిష్పత్తిని XC మరియు XL మధ్య నిష్పత్తి కంచే ఎక్కువ చేయడానికి LC వడపోత RC ఫిల్టర్ కంచే మెరుగ్గా పనిచేస్తుంది. సాధారణంగా LC వడపోతలో నిష్పత్తి 1: 4000 కంచే మెరుగైన అలలపూరిత తిరస్కరణను అందిస్తుంది RC ఫిల్టర్. అలాగే, LC వడపోతలో ఇండక్షర్ యొక్క DC నిరోధకత R యొక్క వడపోతలో R యొక్క నిరోధకత కంచే చాలా తక్కువగా ఉంటుంది కనుక, LC ఫిల్టర్లలో పెద్ద డిస్ట్రిబ్యూషన్ ప్రవాహం ద్వారా ఉత్పన్నమైన వేడి సమస్య చాలా తక్కువగా ఉంటుంది. మిశ్రమ రిజర్వ్యాయర్ కెపాసిటర్ మరియు తక్కువ పాస్ వడపోతతో AC టీరిపుల్ యొక్క 95% లేదా అంతకంచే ఎక్కువ తోలగించడానికి మరియు ఇన్వాట్ వేవ్ యొక్క పీక్ వోల్టేజ్ గురించి ఉత్సాధక వోల్టేజ్ జూ పొందవచ్చు. అయితే టీరానాన్నిర్మర్క, రెక్షిష్ట్యాయర్, రిజర్వ్యాయర్ మరియు తక్కువ పాస్ ఫిల్టర్ కలిగి ఉన్న ఒక సాధారణ విద్యుత్ సరఫరా కొన్ని లోపాలను కలిగి ఉంటుంది. PSU యొక్క ఉత్పత్తి వోల్టేజ్ అవట్టువ్యాట్ నుండి మరింత ప్రస్తుత పోయికి పడిపోతుంది. దీనికి కారణం: సి. రిజర్వ్యాయర్ కెపాసిటర్ ప్రతి చక్కంలో మరింత డిస్ట్రిబ్యూషన్ అవుతోంది. d. నిరోధకం అంతటా గీరేటర్ వోల్టేజ్ డిరాఫ్ లేదా తక్కువ పాస్ వడపోత చౌక్ ప్రస్తుత పెరుగుతుంది. ఈ సమస్యలను పవెట్ సరఫరా ఉత్పత్తిలో రెగ్యులేటర్ దశతో సహా ఎక్కువగా అధిగమించవచ్చు.

Either LC or RC low pass filters can be used to remove the ripple remaining after the reservoir capacitor. The LC filter shown in Fig. below is more efficient and gives better results than the RC filter shown in Figure but for basic power supplies, LC designs are less popular than RC, as the inductors needed for the filter to work efficiently at 50 to 120Hz need to be large and expensive laminated or toroidal core types. However modern designs using switch mode supplies, where any AC ripple is at much higher frequencies, much smaller ferrite core inductors can be used. The low pass filter passes low frequency, in this case DC (0Hz) and blocks higher frequencies, whether 50Hz or 120Hz in basic circuits or tens of kHz in switch mode designs. The reactance (XC) of the capacitor in the either of the filters is very low compared with the resistance of resistor R or the reactance of the choke XL at the ripple frequency. In RC designsthe resistance of R must be a fairly low value as the entire load current, maybe several amperes, must pass through it, generating a considerable amount of heat. A typical value would therefore be 50 ohms or less, and even at this value, a large wire wound resistor would normally need to be used. This limits the efficiency of the filter as the ratio between the resistance of R and the capacitor reactance will not be greater than about 25:1. This then would be the typical reduction ratio of the ripple amplitude. By including the low pass filter some voltage is lost across the resistor, but this disadvantage is offset by the better ripple performance than by using the reservoir capacitor alone.

రిజర్వ్యాయర్ కెపాసిటర్ తర్వాత మిగిలిపోయిన అలలని తోలగించడానికి LC లేదా RC తక్కువ పాస్ ఫిల్టర్సును ఉపయోగించవచ్చు. Figure లో చూపిన LC వడపోత మరింత సమర్థవంతంగా ఉంటుంది మరియు RC ఫిల్టర్ మూర్తిలో చూపించిన దాని కంచే మెరుగైన ఫలితాలను ఇస్తుంది కానీ ప్రాథమిక శక్తి సరఫరా కోసం, LC నమూనాలు RC కంచే తక్కువగా ఉంటాయి, వడపోత కోసం అవసరమైన ప్రేరేపకులు 50 నుండి 120Hz పెద్ద మరియు ఖరీదైన లామినేచెడ్ లేదా అంతరంగిక కోర్ రకాలుగా ఉండాలి. అయితే స్విచ్ మోడ్ సరఫరాలను ఉపయోగించి ఆధునిక నమూనాలు, ఏ AC అలలత చాలా ఎక్కువ పొనఃపున్యాల వద్ద ఉంది, చాలా చిన్న ఫెర్రైట్ కోర్ ఇండక్షన్ ఉపయోగించవచ్చు. తక్కువ పాస్ వడపోత తక్కువ పొనఃపున్యాన్ని, ఈ సందర్భంలో DC (0Hz) మరియు అధిక ఫీరీక్వెన్సీలను భ్యాక్ చేస్తుంది, స్విచ్ మోడ్ రూపకల్పనలో ప్రాథమిక సర్క్యూల్ట్ లేదా పదుల kHz లో 50Hz లేదా 120Hz లేదో. ఫిల్టర్లోని కెపాసిటర్ యొక్క రియాక్షన్ (XC) నిరోధకం R యొక్క ప్రతిఫుటన లేదా అలల పొనఃపున్యంలో చోక్ XL యొక్క ప్రతిచర్యతో పోలిస్ట్ చాలా తక్కువగా ఉంటుంది. R యొక్క రూపకల్పనలో R యొక్క ప్రతిఫుటన

మొత్తం మొత్తం లోడ్ ప్రస్తుత అపి తక్కువగా ఉంటుంది, బహుశా అనేక ఆంపియర్లు, దాని గుండా వెళ్లాలి, గణనీయమైన ప్యాయలో వేడిని ఉత్పత్తి చేస్తుంది. అందువలన ఒక విలక్షణ విలువ 50 ohms లేదా తక్కువ ఉంటుంది, మరియు ఈ విలువలో కూడా, ఒక పెద్ద వైరు గాయం నిరోధకం సాధారణంగా ఉపయోగించాల్సి ఉంటుంది. R యొక్క ప్రతిష్టాపన మరియు కెపాసిటర్ రియూషన్స్ మధ్య నిష్పత్తి 25: 1 కన్నా ఎక్కువ ఉండదు కాబట్టి ఇది వడపోత సామర్థ్యాన్ని పరిమితం చేస్తుంది. ఈ తరువాత అలల వ్యాప్తి యొక్క సాధారణ తగ్గింపు నిష్పత్తి ఉంటుంది. తక్కువ వడపోత వడపోతతో సహా, కొన్ని ఎల్చైబ్ మణికట్టు అంతటా పోతుంది, కానీ ఈ ప్రతికూలత రిజిస్ట్రోయర్ కెపాసిటరును ఉపయోగించడం కంచే మెరుగైన అలల ప్రదర్శన ద్వారా భర్తీ చేస్తుంది.

The LC filter performs much better than the RC filter because it is possible to make the ratio between XC and XL much bigger than the ratio between XC and R. Typically the ratio in a LC filter could be 1:4000 giving much better ripple rejection than the RC filter. Also, since the DC resistance of the inductor in the LC filter is much less than the resistance of R in the RC filter, the problem of heat being generated by the large DC current is very much reduced in LC filters. With a combined reservoir capacitor and low pass filter it is possible to remove 95% or more of the AC ripple and obtain an output voltage of about the peak voltage of the input wave. A simple power supply consisting of only transformer, rectifier, reservoir and low pass filter however, does have some drawbacks.

The output voltage of the PSU tends to fall as more current is drawn from the output. This is due to:

- The reservoir capacitor being discharged more on each cycle.
- Greater voltage drop across the resistor or choke in the low pass filter as current increases.

These problems can be largely overcome by including a regulator stage at the power supply output.

XC మరియు R మధ్య నిష్పత్తిని XC మరియు XL మధ్య నిష్పత్తి కంచే ఎక్కువ చేయడానికి LC వడపోత RC ఫిల్టర్ కంచే మెరుగై పనిచేస్తుంది. సాధారణంగా LC వడపోతలో నిష్పత్తి 1: 4000 కంచే మెరుగైన అలలపూరిత తీరస్కరణను అందిస్తుంది RC ఫిల్టర్. అలాగే, LC వడపోతలో ఇండక్షన్ యొక్క DC నిరోధకత R యొక్క వడపోతలో R యొక్క నిరోధకత కంచే చాలా తక్కువగా ఉంటుంది కనుక, LC ఫిల్టర్లలో పెద్ద డిస్ట్రిబ్యూషన్ ప్రవాహం ద్వారా ఉత్పన్నమైన వేడి సమస్య చాలా తక్కువగా ఉంటుంది. మిశ్రమ రిజిస్ట్రోయర్ కెపాసిటర్ మరియు తక్కువ పొన్స వడపోతతో AC

టీరిపుల్ యొక్క 95% లేదా అంతకంటే ఎక్కువ తోలగించడానికి మరియు ఇన్వెట్ వేవ్ యొక్క పీక్ వోల్టేజ్ గురించి ఉత్సాహం వోల్టేజ్సు పాందవచ్చు. అయితే టీరానాన్నిర్మిర్, రెక్షిష్టైయర్, రిజర్వ్యాయర్ మరియు తక్కువ పాన్ ఫిల్టర్ కలిగి ఉన్న ఒక సాధారణ విద్యుత్ సరఫరా కొన్ని లోపాలను కలిగి ఉంటుంది.

PSU యొక్క ఉత్పత్తి వోల్టేజ్ అవుట్టువెట్ నుండి మరింత ప్రస్తుత షాయికి పదిపోతుంది. దీనికి కారణం:

సి. రిజర్వ్యాయర్ కెపాసిటర్ ప్రతి చక్రంలో మరింత డిస్ట్రిబ్ అవుతోంది.

ర. నిరోధకం అంతటా గీరేటర్ వోల్టేజ్ డీరాప్ లేదా తక్కువ పాన్ వడపోత చోక్ ప్రస్తుత పెరుగుతుంది.

ఈ సమస్యలను పవెట్ సరఫరా ఉత్పత్తిలో రెగ్యులేటర్ దశతో సహ ఎక్కువగా అధిగమించవచ్చు.

Power supply Quiz

1. Refer to Fig 7.17. below. What is the function of block B?

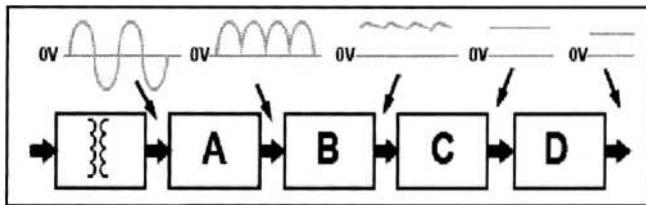


Figure 7.17

- a) Rectifier.
- b) Reservoir capacitor.
- c) Low pass filter.
- d) Regulator.

2. Refer to Fig-1 What is the function of block A?

- a) Transformer.
- b) Full wave rectifier.
- c) Bridge rectifier.
- d) Reservoir capacitor.

3. Refer to Figure. What will be the approximate value of the DC component of the waveform at the output of block A?

- a) $VPK \times 0.318$
- b) $VPK \times 0.5$
- c) $VPK \times 0.637$
- d) $VPK \times 0.707$

4. Refer to Figure 7.18 below. If input B is more positive than input A, which diodes will be conducting?

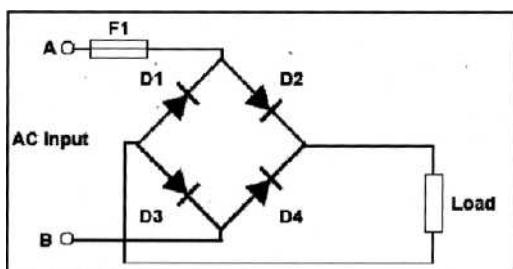


Figure 7.18

- a) D1 and D2.
- b) D2 and D3
- c) D1 and D4
- d) D3 and D4

5. Refer to Fig 2. If D4 were to go short circuit, what would be the effect on the operation of the circuit?

- a) A decrease in the current through D1.
- b) Fuse F1 would blow.
- c) A higher voltage across the load.
- d) A larger peak current through D2 and D3.

6. What is the action of the reservoir capacitor in a basic power supply circuit?

- a) To de-couple the DC component of the rectifier AC output.
- b) To Increase the DC component and reduce the AC component of the AC wave.
- c) To remove the DC component of the AC wave.
- d) To regulate the AC wave.

7. Which of the following is an advantage of using a LC low pass filter rather than a RC low pass filter in a power supply?

- a) The reactance of L will be much lower than the resistance of R at mains frequency
- b) The reactance of L will be much higher than the resistance of R at mains frequency.
- c) An inductor can dissipate more power than a resistor.
- d) LC filters are less expensive than RC filters.

8. Refer to Figure 7-19 What is the power dissipated in R1?



Figure 7.19

- a) 5W
- b) 2W
- c) 500mW
- d) 50mW

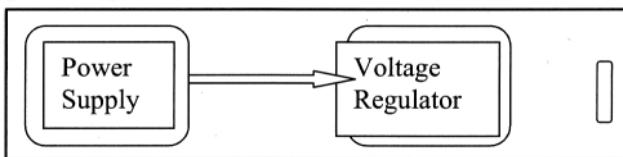
9. Refer to Fig -3. What will be the approximate value of DC across C1?

- 3.8V
- 7.6V
- 10.8V
- 14.5V

10. Refer to Fig -3. What is the reactance of C2 at the ripple frequency?

- 6.4
- 0.3
- 5.1
- 3.2

*


Answers

VOLTAGE REGULATOR CIRCUIT

Regulated Power Supply

Regulated power supply is an electronic circuit that is designed to provide a constant dc voltage of predetermined value across load terminals irrespective of ac mains fluctuations or load variations.

As shown in the figure, the two main parts of a regulated power supply are a simple power supply and a voltage regulating device. The power supply output is given as input to the voltage regulating device that provides the final output. The voltage output of the power supply remains constant irrespective of large variations in the input AC voltage or output load current.

Given

నియంత్రిత విద్యుత్ సరఫరా అనేది ఒక ఎలక్ట్రానిక్ సర్క్యూట్, ఇది ఎసి మెయిన్స్ హెచ్చుతగ్గులు లేదా లోడ్ వైవిధ్యాలతో నిమిత్తం లేకుండా లోడ్ చెరిసునున్న ముందుగా నిర్ణయించిన విలువ యొక్క ప్రైస్ రెజిస్టర్ ద్వారా నిర్ణయించబడింది.

చిత్రంలో చూపించిన విధంగా, నియంత్రిత విద్యుత్ సరఫరా యొక్క రెండు ప్రధాన భాగాలు సాధారణ విద్యుత్తు సరఫరా మరియు వోల్టేజ్ నియంత్రణ పరికరం. విద్యుత్ ఉత్పత్తి అవుట్టుట్ తుది ఉత్పత్తిని అందించే వోల్టేజ్ నియంత్రణ పరికరానికి ఇన్నిటా ఇవ్వబడుతుంది. విద్యుత్ సరఫరా యొక్క వోల్టేజ్ అవుట్టుట్ ఇన్నిట్ AC వోల్టేజ్ లేదా అవుట్టుట్ లోడ్ కరెంట్ వెధ తేడాలతో సంబంధం లేకుండా షిరంగా ఉంటుంది.

below is a circuit diagram of a regulated power supply circuit using a trails tor (cries regulator as a regulating device. The input AC voltage (230 Volts Vrms), is I luppiled to a transformer. The output will be a stepped down ac output appropriate for the desired dc output. This ac voltage is then given to a bridge rectifier to produce a lull -wave rectified output. This is then given to a pi-filter circuit to produce a dc voltage. The filter output may have some ac voltage variations and ripples. This is further filtered using a regulating circuit whose output will be a constant dc voltage. I his regulated dc voltage is then given to a voltage divider, which supplies the different

కీరింద ఒక నియంత్రిత విద్యుత్ సరఫరా సరూచ్యట్ యొక్క ఒక సరూచ్యట్ రేఖాచిత్రం (ట్రైల్స్ టోర్స్ ఉపయోగించి క్రమాన్ని నియంత్రిస్తుంది), ఇన్నిట్ AC వోల్టేజ్ (230 వోల్టాస్ క్రమాన్ని నేను ఒక టీరానాస్ రైర్ లాష్టిడ్ అవుతాను. కావలసిన dc అవుట్టుట్ కోసం ఈ ఎసి వోల్టేజ్ అప్పుడు ఒక వంతెన ప్రతిక్షేపణకు ఒక లాజ్-వెయిచేడ్ రికిష్ట్రైడ్ అవుట్టుట్ ఇవ్వబడుతుంది. దీనిని ఒక DC వోల్టేజ్ ఉత్పత్తి చేయడానికి ప్రై-ఫిల్టర్ సరూచ్యట్ ఇవ్వబడుతుంది. ఫిల్టర్ అవుట్టుట్ కొన్ని యసిడ్ వోల్టేజ్ వైవిధ్యాలు మరియు తరంగాలను కలిగి ఉంటుంది. ఇది ఒక రెగ్యులేటింగ్ సరూచ్యట్ ఉపయోగించి ఫిల్టర్ చేయబడుతుంది, దీని అవుట్టుట్ ఒక షిరమైన dc వోల్టేజ్ అవుతుంది. ఆయన నియంత్రిత డిసి వోల్టేజ్ అప్పుడు వోల్టేజ్ డివైడర్ ఇవ్వబడుతుంది,

(It voltages that may be needed for different electronic circuits.

The potential divider is a single tapped resistor connected across the output terminals of the supply, The lapped resistor may consist of two or three resistors

connected in series across the supply. A bleeder resistor may also be employed as a potential divider.

(ఇది వివిధ ఎలక్షానిక్ సర్క్యూట్లకు అవసరమైన వోల్టేజ్స్ .

సంభావ్య డివైడర్ అనేది ఉత్పత్తి యొక్క అవుట్యూట్ లారెన్చెనల్స్ అనుసంధానించబడిన ఒకే టాప్ నిరోధకం, ఇద్దరు లేదా మూడు రెసిష్టర్లు

సరఫరా అంతటా సిరీప్స్ కనెక్ట్. రక్స్ నొరావం నిరోధకం ఒక సంభావ్య డివైడర్లా కూడా పనిచేయవచ్చు.

Summary of Power Supply basics

Power supplies or power supply units, PSU, form an essential part of very many items of electronics equipment.

The most common form takes in AC power from the mains supply and delivers a DC voltage to the item requiring power.

Accordingly power supplies are widely used in a variety of forms - some large supplying high levels of current, other power supplies, much smaller providing lower levels of power.

విద్యుత్ సరఫరా బేసిక్స్ సారాంశం

విద్యుత్ సరఫరాలు లేదా విద్యుత్ సరఫరా విభాగాలు, పిఎస్యూ, ఎలక్షానిక్ పరికరాలలో చాలా అంశాలకు అవసరమైన భాగంగా ఉన్నాయి.

అత్యంత సాధారణ రూపం మొయిన్స్ సరఫరా నుండి AC శక్తిలో పదుతుంది మరియు అందిస్తుంది a

అధికారం అవసరమైన వస్తువుకు DC వోల్టేజ్.

విద్యుత్ సరఫరా వివిధ రకాల్లో విస్మయంగా వాడబడుతోంది - కొన్ని పెద్ద విద్యుత్ సరఫరా, అధిక విద్యుత్ సరఫరాల సరఫరా, తక్కువ పోయి విద్యుత్ శక్తిని అందిస్తాయి.

The aim of a DC power supply is to provide the required level of DC power to the load using an AC supply at the input. Different applications require different attributes, but more often than not these days DC power supplies provide an accurate output voltage - this is regulated using electronic circuitry so that it provides a constant output voltage over a wide range of output loads.

In most power supplies there are number of different elements. These may not all be present in every design.

- **Input transformer:** The input transformer is used to transform the incoming line voltage down to the required level for the power supply. Typically the input transformer provides a step down function. It also isolates the output circuit from the line supply.
- **Rectifier:** The power supply rectifier converts the incoming signal from an A(' format into raw DC. Either half wave or more commonly full wave rectifiers may be used as they make use of both halves of the incoming AC signal.
- **Smoothing:** The raw DC from the rectifier is far from constant falling to zero when the AC waveform crossed the zero axis, and then rising to its peak. Hit' addition of a reservoir capacitor here fills in the troughs in the waveform, enabling the next stage of the power supply to operate. Large value capacitors are normally used within this stage.
- **Regulator:** This stage of the power supply takes the smoothed voltage and uses a regulator circuit to provide a constant output virtually regardless of the out pul current and any minor fluctuations in the input level.

DC విద్యుత్ సరఫరా యొక్క లక్ష్యం ఇన్పుట్ వద్ద ఒక AC సరఫరాను ఉపయోగించి లోడ్ చేయడానికి DC శక్తి యొక్క అవసరమైన ప్రాయిని అందిస్తుంది. వేర్సేరు దరఖాస్తులకు వేర్సేరు లక్ష్ణాలు అవసరమవతాయి, కనీ ఈ రోజుల్లో ఎక్కువగా DC విద్యుత్ సరఫరాలు ఖచ్చితమైన ఉత్పత్తి వోల్టేజ్సు అందిస్తాయి - ఇది ఎలాఫ్టానిక్ సరూచ్యాటును ఉపయోగించి నియంత్రించబడుతుంది, తద్వారా అది ఒక విస్తారమైన అవుట్టుట్ లోడ్సుపై ప్రిమ్యు ఉత్పత్తి వోల్టేజ్సు అందిస్తుంది. చాలా శక్తి సరఫరాలో వివిధ అంశాల సంభయ ఉంది. ఇని ప్రతి రూపకల్పనలోనూ ఉండవు. ఇన్పుట్ టీరానాప్పర్చర్: ఇన్పుట్ టీరానాప్పర్చర్ ఇన్కుమింగ్ లైన్ వోల్టేజ్సు విద్యుత్ సరఫరా కోసం అవసరమైన ప్రాయికి మార్చిందుకు ఉపయోగిస్తారు. సాధారణంగా ఇన్పుట్ టీరానాప్పర్చర్ ఫంక్షన్లు ఒక దశను అందిస్తుంది. ఇది లైన్ సరఫరా నుండి అవుట్టుట్ సరూచ్యాటును

విడిగా చేస్తుంది. • **Rectifier:** విద్యుత్ సరఫరా రికిపైయర్ ఒక A ('ఫార్మాట్' DC కి ఫార్మాట్ చేయబడుతుంది, లేదా ఇన్స్మింగ్ AC సిగ్నల్ యొక్క రెండు భాగాలుగా ఉపయోగించడం వలన సగం వేవ్ లేదా సాధారణంగా సాధారణంగా పూర్తి వేవ్ రెక్షిపైయర్లను ఉపయోగించడం జరుగుతుంది. • **మృదులాపై:** AC వైబ్రేట్ సున్నా అక్షాన్ని దాటినప్పుడు, మరియు దాని శిఖరానికి పెరుగుతున్నప్పుడు రెక్షిపైయర్ నుండి ముంది DC సున్నాకి తగ్గిపోతుంది. హాట్ 'రిజర్వ్ యర్ కెపాసిటర్ యొక్క అదనంగా వేవ్ రమ్పొని పాదలలో నింపుతుంది, విద్యుత్ సరఫరా యొక్క తరువాతి దశ పనిచేయడం ఏరారంభిస్తుంది. పెద్ద విలువ కెపాసిటర్లు సాధారణంగా ఈ దశలో ఉపయోగించబడతాయి. • **నియంత్రకం:** విద్యుత్ సరఫరా యొక్క ఈ దశలో చదును చేయబడిన ఒల్ఫెజిని తీసుకుంటుంది మరియు ఇన్స్టోల్యూట్ పల్ కరెంట్ మరియు ఎవైనా చిన్న ఒడిదుడుకులు లేకుండా వాస్తవంగా ప్రిమ్యున ఉత్పత్తిని అందించడానికి ఒక నియంత్రక సర్క్యూట్లు ఉపయోగిస్తుంది.

POWER SUPPLY REGULATION

There are two basic forms of power supply used in electronics equipment:

- **Unregulated:** This form of power supply was the only type used many years ago. It simply consisted of a rectifier section and this was followed by capacitor or inductor and capacitor smoothing. There was no regulation to steady the voltage. If a large current was drawn the voltage would fall as a result of the resistive losses, and also the smoothing would not be as effective and the level of hum would rise.
- **Voltage regulated:** As transistor circuitry became more commonplace, regulated power supplies became more common. Today they are almost universally used. They typically incorporate a voltage reference, and the output voltage is compared to this and altered accordingly by control circuitry within the regulated power supply.

In addition to this, regulated power supplies may be further subdivided:

- **Linear regulated power supply:** Linear regulated power supplies use an analogue approach. A series element - a semiconductor transistor or FET - is controlled to allow the correct voltage at the output for any current within the operating range. Note on Linear Power Supplies:

Linear power supplies are widely used for applications where low noise and ripple are required. As the name suggests, they use linear technology - typically a series linear

regulator element to drop voltage. As such they dissipate power, but without any switching mode, they are able to offer high levels of performance

- **Switching regulator power supply:** The switching regulator format for a power supply uses a large output reservoir capacitor. A series element - a transistor or FET - is switched on and off to keep the voltage on the capacitor within the required limits.

Note on Switch Mode Power Supplies:

Switch mode power supplies and switch mode regulators have many advantages in terms of efficiency, size and weight. Their design can be more involved than might be thought at first. Yet with a good understanding, these switch mode power supplies, SMPSs, switch mode regulators and switch mode controllers can be successfully designed and built..

Each type of power supply regulation technique has its own advantages and disadvantages. As a result different types of regulator are used in different applications, although with technology improving, switching regulators are being used increasingly.

POWER SUPPLY REGULATION ఎలక్ట్రానిక్ పరికరాలలో ఉపయోగించే రెండు ప్రాథమిక రూపాలు విద్యుత్ సరఫరాలో ఉన్నాయి: • నియంత్రణ లేని: ఇబీస్ రూపం ఓ విద్యుత్ సరఫరా అనేక సంవత్సరాల క్రితం ఉపయోగించిన ఏకైక రకం ఇది కేవలం ఒక రెక్షిషైయర్ విభాగాన్ని కలిగి ఉంటుంది మరియు ఇది తరువాత కెపాసిటర్ లేదా కెపాసిటర్ మరియు ఇండక్షర్ స్టాజిట్. స్థిరమైన వోల్టేజ్స్ ఎలాంటి నియంత్రణ లేదు. ఒక పెద్ద విద్యుత్ ప్రవాహం ఉంటే, వోల్టేజ్ రెసిస్ట్యూ నష్టాల ఫలితంగా పడిపోతుంది, మరియు కూడా సులభం అవుతుందని మరియు హామ్ యొక్క పోయి పెరుగుతుంది. • వోల్టేజ్ క్రమబద్ధికరించబడింది: టీరానిస్పర్ సర్క్యూట్ సర్వోసాధారణంగా మారినందున నియంత్రిత విద్యుత్ సరఫరా మరింత సాధారణం అయ్యంది. నేడు వారు దాదాపు ప్రపంచవ్యాప్తంగా ఉపయోగిస్తారు. ఇవి సాధారణంగా ఒక వోల్టేజ్ సూచనను కలిగి ఉంటాయి మరియు ఉత్పత్తి వోల్టేజ్ పోల్చుబడుతుంది మరియు క్రమబద్ధికరించిన విద్యుత్ సరఫరాలో నియంత్రణ సర్క్యూట్ ద్వారా మార్చుబడుతుంది. దీనికి అదనంగా, నియంత్రిత విద్యుత్ సరఫరా మరింత ఉపవిభజన అవుతుంది: • లీనియర్ నియంత్రిత సరఫరా: లీనియర్ నియంత్రిత విద్యుత్ సరఫరాలు ఒక అనలాగ్ విధానాన్ని ఉపయోగిస్తాయి. శీరేటి మూలకం - ఒక సెమీకండక్షర్ టీరానిస్పర్ లేదా FET - నియంత్రిత

శరేణిలో ఎదైనా ప్రస్తుత విద్యుత్ ఉత్పత్తికి సరైన వోల్టేజ్‌స్టు నియంత్రిస్తుంది. తక్కువ శబ్దం మరియు అలల అవసరమయ్య అనువర్తనాలకు లీనియర్ విద్యుత్ సరఫరా విష్టుతంగా ఉపయోగిస్తారు. పేరు సూచించినట్లుగా, వారు సరళ సాంకేతికతను ఉపయోగిస్తారు - వోల్టేజ్‌స్టు వదలడానికి వరుస శరేణి రెగ్యలేటర్ మూలకం. అందువల్ల వారు అధికారాన్ని వెదజల్లుతారు, కానీ ఏ స్విచ్ మోడ్ లేకుండా, వారు అధిక షాయిలో ప్రదర్శనలను అందిస్తారు. నియంత్రకం విద్యుత్ సరఫరా మార్పిడి: విద్యుత్ సరఫరా కోసం స్విచ్‌స్టోర్ రెగ్యలేటర్ ఫార్మాట్ పెధ్ద అవుట్యూట్ రిజర్వ్యూయర్ కెపాసిటుర్ ఉపయోగిస్తుంది. ఒక శరేణి మూలకం - ఒక టీరానిషిప్పర్ లేదా FET - అవసరమైన పరిమితులలో కెపాసిట్‌రైప్ వోల్టేజ్‌స్టు ఉంచడానికి స్విచ్ ఆన్ మరియు ఆఫ్ చేయబడుతుంది. స్విచ్ మోడ్ పవర్ సామగ్రిపై గమనిక: స్విచ్ మోడ్ శక్తి సరఫరా మరియు స్విచ్ మోడ్ నియంత్రకాలు సామర్థ్యం, పరిమాణం మరియు బరువు పరంగా అనేక ప్రయోజనాలు ఉన్నాయి. వారి డిజైన్ మొట్టమొదటటిగా భావించినదాని కంటే ఎక్కువగా ఉంటుంది. ఇంకా మంచి అవగాహనతో, ఈ స్విచ్ మోడ్ శక్తి సరఫరా, SMPS, స్విచ్ మోడ్ నియంత్రణ మరియు స్విచ్ మోడ్ కంటోలర్ విజయవంతంగా రూపకల్పన మరియు నిర్వించబడతాయి .. ప్రతి రకాన్ని విద్యుత్ సరఫరా నియంత్రణ పద్ధతిలో దాని సాంత ప్రయోజనాలు, పిడి నష్టాలు ఉన్నాయి. దీని ఫలితంగా వివిధ రకాల్లో నియంత్రకం వివిధ రకాల్లో ఉపయోగించబడుతున్నాయి, సాంకేతిక పరిష్కారం అభివృద్ధి చెందుతున్నప్పటికీ, నియంత్రణ నియంత్రకాలు పేరుగుతున్నాయి.

Regulator type	Advantages	Disadvantages
Linear regulator	<ul style="list-style-type: none"> Very low level of noise Straightforward technology 	<ul style="list-style-type: none"> Low level of efficiency High levels of heat may need to be dissipated Large size compared to switching regulator

Switching regulator	<ul style="list-style-type: none"> Highly efficient Can be made very compact Low amounts of heat need to be removed 	<ul style="list-style-type: none"> Ripple and noise can be higher than linear regulator EMC issues need to be addressed as switching spikes can cause interference
---------------------	--	--

As a result of the different properties of each type of power supply regulator, linear regulators tend to be used in applications where very low levels of noise and ripple are required and heat dissipation may not be such a problem. Hi-fi amplifiers are one such area. Switching mode regulators are used more widely as they can be made very compact, they are very efficient and the levels of ripple, spikes and noise can normally be low enough for most applications.

ప్రతి రకాన్ని విధ్యుత్ సరఫరా నియంత్రకం యొక్క వివిధ లక్షణాల ఫలితంగా, సరళ నియంత్రకాలు అనువర్తనాల్లో ఉపయోగించబడతాయి, ఇక్కడ చాలా తక్కువ శబ్దం మరియు అలల అవసరమవుతాయి మరియు వేడి చెడిపోవడం ఇటువంటి సమస్య కాదు. హాయ్ ఫిక్షన్ ఆమ్పిషయర్లు అటువంటి ఏరాంతం. స్వీచ్ మోడ్ నియంత్రకాలు చాలా విస్పృతంగా వాడబడతాయి, అవి చాలా కొంపాక్ట్ చేయగలవు, అవి చాలా సమర్థవంతంగా ఉంటాయి మరియు అలల, వచ్చే చిక్కులు మరియు శబ్దం యొక్క ప్లాయలు సాధారణంగా చాలా అనువర్తనాల కోసం తగినంత తక్కువగా ఉంటాయి.

APPLICATIONS OF TRANSISTOR - ITS USES

Applications of Transistors

The transistor as an amplifier

1. A transistor can be used to amplify current. This is because a small change in base current causes a large change in collector current.
2. Example is a microphone.
3. Sound waves that are fed into the microphone cause the diaphragm in the microphone to vibrate.
4. The electrical output of the microphone changes according to the sound waves.
5. As a result, the base current is varying because of the small alternating voltage produced by the microphone.

6. A small change in the base current causes a large change in the collector current,
7. The varying collector current flows into the loudspeaker. There, it is changed into the sound waves corresponding to the original sound waves.
8. The frequencies of both waves are equivalent but the amplitude of the sound wave from the loudspeaker is higher than the sound waves fed into the microphone

- **Component:** Function
- **Microphone:** To change sound signal to electrical signal
- **Capacitor:** To block a steady current from flowing into the transistor and microphone.
- **Potential divider:** To apply a proportion of the total voltage across the emitter- base junction so that the junction is forward-biased.
- **Transistor:** To amplify the input wave form.
- **Loudspeaker:** To change the electrical signal to sound wave.

టీరాన్సిప్షర్ అనువర్తనాలు

టీరాన్సిప్షర్ ఒక యాంప్లిఫైయర్

1. ఒక టీరాన్సిప్షర్ ప్రస్తుత విస్తరించేందుకు ఉపయోగించవచ్చు. ఎందుకంచే, బేస్ కరెంట్ లో చిన్న మార్పు కలెక్టర్ కరెంట్ లో పెద్ద మార్పుకు కారణమవుతుంది.
2. ఉదాహరణ మైక్రోఫోన్.
3. మైక్రోఫోన్ కి విడుదలయ్యే సాండ్ తరంగాలు మైక్రోఫోన్ వైబరేట్ చేయడానికి ఉయాఫ్రాగమ్ము కారణమవుతాయి.
4. ధ్వని తరంగాలు ప్రకారం మైక్రోఫోన్ యొక్క విధ్యుత్ ఉత్పత్తి మారుతుంది.
5. ఫలితంగా, మైక్రోఫోన్ ఉత్పత్తి చేసిన చిన్న ఆల్బర్కుటింగ్ వోల్ఫ్మేజ్ కారణంగా బేస్ కరెంట్ మారుతూ ఉంటుంది.
6. బేస్ ప్రస్తుత ఒక చిన్న మార్పు కలెక్టర్ ప్రస్తుత లో ఒక పెద్ద మార్పు కారణమవుతుంది,

7. లోడ్ స్పీకర్లో వివిధ కలెక్టర్లు ప్రస్తుత ప్రవాహం. అక్కడ, అసలు ధ్వని తరంగాలకు అనుగుణంగా ఉండే ధ్వని తరంగాలలో ఇది మార్పుబడుతుంది.
8. రెండు తరంగాల పొనఃపున్యాలు సమానంగా ఉంటాయి కానీ మైక్రోఫోన్ ధ్వని తరంగాల కంచే లోడ్ స్పీకర్ నుండి ధ్వని తరంగాల వ్యాప్తి ఎక్కువగా ఉంటుంది

- భాగం: ఫంక్షన్
- మైక్రోఫోన్: ఎలక్ట్రానిక్ సిగ్నలుగు సాండ్ సిగ్నలుగు మార్పాడానికి
- కెపాసిటర్: టీరాన్సిప్షర్ మరియు మైక్రోఫోన్ కి ప్రవహించే స్థిరమైన కరెంట్లుగు నిరోధించేందుకు.

- సంభావ్య డివైడర్: ఉధార-బేస్ జింక్షన్ అంతటా మొత్తం ఎల్సైజ్ యొక్క భాగాన్ని వర్తింపచేయడం, తద్వారా జింక్షన్ ముందుకు-పక్కపాతంతో ఉంటుంది.
- టీరానిప్పార్: ఇన్స్పెక్ట్ వేవ్ రూపం విస్తరించేందుకు.
- లోడ్ స్విచ్: ధ్వనిని శబ్దానికి విద్యుత్ సిగ్నల్ మార్పుదానికి.

The transistor as switch

,

1. In a transistor, no current can flow in the collector circuit unless a current flows in the base circuit. This property allows a transistor to be used as switch.
2. The transistor can be turned on or off by changing the base.
3. There are a few types of switching circuits operated by transistors.

(a) *Light-Operated Switch*

1. The circuit is designed to light the bulb in a bright environment and to turn it off in the dark.
2. One of the components in the potential divider is a light-dependent resistor (LDR). When it is placed in DARKNESS, its resistance is large. The transistor is switched OFF.
3. When LDR is lighted by bright light, its resistance falls to small value resulting in more supply voltage and raising the base current. The transistor is switched on, collector current flows and bulb lights up.

(b) *Heat-operated switch*

1. One important component in the circuit of a heat-operated switch is the thermistor.
2. Thermistor is type of resistor that responds to the surrounding temperature. Its resistance increases when the temperature is low and vice versa.
3. When heat is applied to the thermistor, its resistance drops and a greater share of supply voltage is dropped across R. The base current increases followed by a greater increase in the collector current. The bulb will glow and the siren will sound.
4. This particular circuit is suitable as a fire alarm system.

Integrated Circuits (IC)

1. An integrated circuit (IC) consists of transistors, resistors, diodes and capacitors combined together in one wafer-thin chip of silicon.
2. This is one wafer thin chip is called a microchip.
3. The microchip is only a few millimeters square with a thickness of 0.5 mm.

టీరానిప్పార్ స్విచ్,

1. టీరానిప్పార్, బేస్ సెక్చర్స్ ప్రస్తుత ప్రవాహం ఉండకపోతే ప్రస్తుతం కరెక్షన్ సర్క్యూట్ ప్రవాహం ఏదీ లేదు. ఈ ఆస్తి టీరానిప్పార్ ను స్విచ్ ఉపయోగించటానికి అనుమతిస్తుంది.
2. టీరానిప్పార్ బేస్ మార్పుడం ద్వారా అన్ లేదా ఆఫ్ చేయవచ్చు.
3. టీరానిప్పార్ నిర్వహించిన కొన్ని రకాల స్విచ్ సర్క్యూట్లు ఉన్నాయి.

(ల) లైట్-ఆపరేచెంట్ స్మీచ్

1. సర్క్యూట్ ఒక ప్రకాశంతమైన వాతావరణంలో బల్పు వెలుగులోకి మరియు కృష్ణ దాన్ని ఆఫ్ చేయడానికి రూపొందించబడింది.
2. సంభావ్య డివైడర్లోని ఒక భాగంలో కాంట్రి-ఆధారిత నిరోధకం (LDR) ఉంటుంది. అది చీకటిలో ఉన్నప్పుడు, దాని నిరోధకత పెందది. టీరానిప్పర్ OFF స్మీచ్ చేయబడింది.

3. LDR ప్రకాశంతమైన వెలుగుతో వెలుగులోకి వచ్చినప్పుడు, దాని నిరోధకత చిన్న విలువకు పడిపోతుంది, తద్వారా మరింత సరఫరా వోల్టేజ్ మరియు బోస్ ప్రస్తుత పెంచబడుతుంది. టీరానిప్పర్ స్మీచ్ ఆన్, కలెక్టర్ ప్రస్తుత ప్రవాహాలు మరియు బల్పు లైట్లు అవ్వే.

(బి) వేడి-పనిచేసే స్మీచ్

1. ఉష్టప్ప-పనిచేసే స్మీచ్ సర్క్యూట్ ఒక ముఖ్యమైన భాగం ధరిష్టార్.
2. ధరిష్టప్ప పరిసర ఉష్టప్పగ్రతకి ప్రతిస్పందిస్తున్న నిరోధకం యొక్క రకం. ఉష్టప్పగ్రత తక్కువగా ఉన్నప్పుడు మరియు దానిలో విరుద్ధంగా ఉన్నప్పుడు దాని నిరోధకత పెరుగుతుంది.
3. ధరిష్టప్పర్ ఉష్టప్పన్ని వర్తింపజేసినప్పుడు, దాని ప్రతిఫలన చుక్కలు మరియు పంచిణీ వోల్టేజ్ యొక్క అధిక భాగాన్ని R అంతటా తగ్గిపోతుంది. ప్రస్తుత ప్రస్తుత పెరుగుదల తర్వాత కలెక్టర్ ప్రస్తుతంలో ఎక్కువ పెరుగుతుంది. బల్పు గ్రో మరియు సిరెన్ ధ్వనిస్తుంది.
4. ఈ ప్రత్యేక సర్క్యూట్ అనేది షైర్ అలారం వ్యవస్థ వలె సరిపోతుంది.

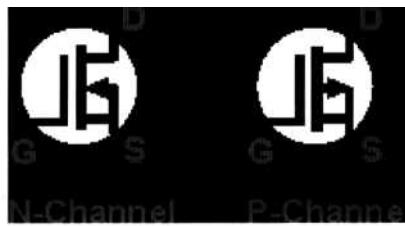
జంటిగ్రేచెంట్ సర్క్యూట్ (IC)

1. జంటిగ్రేచెంట్ సర్క్యూట్ (ఐసి) లో టీరానిప్పర్లు, రెసిష్టర్లు, డయోడ్లు మరియు కెపాసిటిర్లు ఉన్నాయి, వీటిలో సిలికాన్ యొక్క ఒక పోర-సన్సన్ ని చివ్వ ఉంటుంది.
2. ఇది ఒక సన్సన్ పోర, నేను మైక్రోచివ్ తోడ్చుచింది.
3. మైక్రోచివ్ కేవలం 0.5 మిలీ మీటర్ మందంతో కొన్ని మిలీమీటర్ చదరపు మాత్రమే ఉంటుంది.

Advantages of an IC:

- Consumes a small amount of electrical energy.
- Very little heat is generated.
- Occupies a small space which reduces the size of circuits.
- Can be built at low cost.

MOSFET- FETs (Field Effect Transistors) of all types are widely used electronics components today. Of all the types of FET, the MOSFET (Metal Oxide Field Effect Transistors) is possibly the most widely used. MOSFETs provide many advantages. In particular they offer a very high input impedance and they are able to be used in very low current circuits. This is particularly important for integrated circuit technology where power limitations are a major consideration.


ఒక IC యొక్క ప్రయోజనాలు:

- విద్యుత్ శక్తిని కొంచెం పరిమితం చేస్తుంది.
- చాలా తక్కువ వేడి ఉత్పత్తి అవుతుంది.

సి. సర్క్యూట్ పరిమాణాన్ని తగించే ఒక చిన్న ష్లాన్ని ఆక్రమిస్తుంది.

ద. తక్కువ ఖర్చుతో నిర్వించవచ్చు.

అన్ని రకాల MOSFET- FET లు (ఫీల్డ్ ఎఫెక్ట్ టర్మానీషార్ట్) విస్తృతంగా ఎలక్ట్రానిక్స్ భాగాలు ఉపయోగిస్తున్నాయి. FET యొక్క అన్ని రకాలో, MOSFET (మెటల్ ఆకిన్స్ ఫీల్డ్ ప్రభావం టర్మానీషార్ట్) బహుశా చాలా విస్తృతంగా ఉపయోగించబడుతుంది. MOSFET లు అనేక ప్రయోజనాలను అందిస్తాయి. ముఖ్యంగా వారు చాలా అధిక ఇన్పుట్ ఇంపెడెన్స్‌ను అందిస్తారు మరియు వారు చాలా తక్కువ విద్యుత్ వలయాలలో ఉపయోగించగలరు. శక్తి పరిమితులు ప్రధానంగా పరిగణించబడే సముద్ర సర్క్యూట్ సాంకేతిక పరిష్కారం కోసం ఇది చాలా ముఖ్యమైనది.

**Figure 7.20: Symbols of N Channel and P Channel MOSFETs.
G-Gate, D-Drain and S-Source**

MOSFET - PRECAUTIONS WHEN HANDLING

MOSFET Safety Precautions

Certain safety precautions must be observed when handling and using MOSFETs. It is important to check the manufacturer's specification sheet for maximum rating of EGS.(Voltage between Gate and Source.)

MOSFET భద్రత జాగ్రత్తలు

MOSFET లను నిర్వహించడం మరియు ఉపయోగించినప్పుడు కొన్ని జాగ్రత్తలు తప్పక గమనించాలి. గరిష్ట రేటింగ్ 01 EGS కోసం తయారీదారు యొక్క వివరణ వీట్యును తనిటీ చేయడం ముఖ్యం. (గేట్ మరియు మూల మధ్య వోల్టేజ్.)

Caution!

If EGS is increased too much, the thin insulating layer ruptures, ruining the device. The insulating layer is so sensitive that it can be damaged by a static charge that has built up on the leads of the device. Electrostatic charges on fingers can be transferred to the MOSFETs leads when handling or mounting the device.

To avoid damage to the device, MOSFETs are usually shipped with the lead,* shorted together. Shorting techniques include wrapping leads with a shorting wire, inserting the

device into a shorting ring, pressing the device into conductive foam, taping several devices together, shipping in antistatic tubes, and wrapping the device in metal foil.

Newer MOSFETs are protected with zener diodes electrically connected between the gate and source internally. The diodes protect against static discharges and in-circuit transients and eliminate the need for external shorting devices. In electronics, a transient is a temporary component of current existing in a circuit during adjustment to a load change, voltage source difference, or line impulse.

If the following procedures are followed, unprotected MOSFETs can be handled safely:

1. Prior to installation into a circuit, the leads should be kept shorted together.
2. The hand used to handle the device should be grounded with a metallic wristband.
3. The soldering iron tip should be grounded. :
4. A MOSFET should never be inserted or removed from its circuit when the power is on.

జాగ్రత్త!

EGS చాలా ఎక్కువగా ఉంటే, సన్నని నిరోధక పొర విచ్చినాలు, పరికరం నాశనం. ఇన్సులేటింగ్ లేయర్ చాలా సున్నితమైనది, అది పరికరం యొక్క ప్రధాన భాగాలపై నిర్మించిన ఫీరమైన ఛార్ట్ ద్వారా దెబ్బతింటుంది. పరికరాలను నిర్వహించడం లేదా మోంటు చేసేటప్పుడు వేళ్లు ఉన్న ఎత్కోషాటిక్ ఛార్ట్లు MOSFET ల దారికి బదిలీ చేయబడతాయి.

పరికరానికి సష్టం జరగకుండా, MOSFET లు సాధారణంగా ప్రధానంగా రవాణా చేయబడతాయి * కలిసి చిన్నగా ఉంటాయి. చిన్నదైన పద్ధతులలో చిన్నదైన వైర్ చుట్టడంతో, పరికరం చిన్నదైన రింగ్ చోప్పించడం, పరికరాన్ని వాహక ప్రవాహంలోకి నెఱ్చడం, అనేక పరికరాలను కలిపి, యాంటీటిటిక్ ట్యూబ్ల్ మిపింగ్, మరియు డెవిల్ r ను మెటల్ ఫెయిల్ చుట్టడం.

కొత్త MOSFET లు జెనర్ డయోడ్లతో విద్యుత్తో గేటు మరియు మూల మధ్య అంతర్భతంగా అనుసంధానించబడి ఉంటాయి. డయోడు షాటిక్ డిశ్యూరైస్ మరియు ఇన్-సర్క్యూట్ టరాన్సిస్టమెంట్లకు వ్యతిరేకంగా ఉంటాయి మరియు బహ్య సంచి పరికరాల అవసరాన్ని తీసివేస్తాయి. ఎలక్ట్రానిక్స్, భారమైన మార్పు, వోల్టేజ్ మూలం వ్యత్యాసం, లేదా లైన్ ప్రేరణకు సర్పుబాటు సమయంలో ప్రస్తుతము ఉన్న ఒక తాత్కాలిక భాగం తాత్కాలికమైనది.

కింది విధానాలను అనుసరిస్తే, అనురక్షిత MOSFET లను నిర్వహించవచ్చు సురక్షితంగా:

1. సర్క్యూట్ సంషోధనకు ముందు, లీడ్స్ కలిసి ముగుస్తాయి.
2. పరికరాన్ని నిర్వహించడానికి ఉపయోగించే చేతి మెటాలిక్ చేతిపట్టుపై ఆధారపడాలి.
3. soldering ఇనుము చిట్టు గీరోఫ్సేడ్ చేయాలి. :
4. శక్తి ఉన్నప్పుడు ఒక MOSFET దాని సర్క్యూట్ నుండి ఇన్స్ర్ లేదా తోలగించరాదు.

QUESTIONS

1. What is the reason that MOSFETs have to be handled very carefully?
2. What voltage source, if exceeded, can ruin a MOSFET?

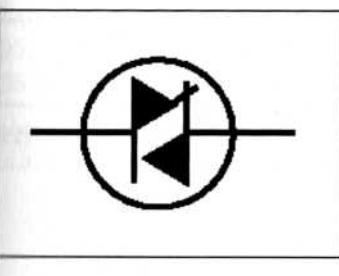
- What methods are used to protect MOSFETs during shipping?
- What precautions have been taken to protect newer MOSFETs?
- Describe the procedures that must be observed when handling unprotected MOSFETs.

ప్రశ్నలు

1. MOSFET లు చాలా జాగ్రత్తగా నిర్వహించాలిన కారణం ఏమిటి?
2. ఏ ఒట్టేజి మూలం, మించి ఉంచే, ఒక MOSFET నాశనం చేయవచ్చు?
3. షిపింగ్ సమయంలో MOSFET లను రక్షించడానికి ఏ పద్ధతులు ఉపయోగించబడుతున్నాయి?
4. కొత్త MOSFET లను కాపాడడానికి ఏ జాగ్రత్తలు తీసుకోబడ్డాయి?
5. అసురక్షిత �MOSFET లను నిర్వహించినప్పుడు గమనించవలసిన విధానాలను వివరించండి.

11. Praśnalu

DIAC, SCR, TRIAC - APPLICATION 5iac


A diac is a form of solid-state switch used to switch AC voltage; it belongs to the class of switches known as thyristers. It is like a junction transistor without a base lead (it is a two-lead device) and accomplishes its switching action by breakdown at a certain voltage. There are also four layer devices with similar mode of operation known as four-layer diodes. The DIAC is a full-wave or bi-directional semiconductor switch that can be turned on in both forward and reverse polarities.

The DIAC gains its name from the contraction of the words Diode Alternating Current.

The DIAC is widely used to assist even triggering of a TRIAC when used in AC switches. DIACs are mainly used in dimmer applications and also in starter circuits for fluorescent lamps.

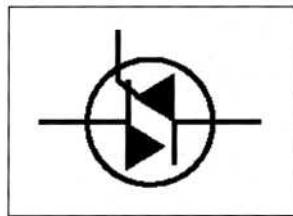
ఒక డయాక్ AC వోల్టేజ్సు మార్పుడానికి ఉపయోగించే ఫున్-ఫైతి స్విచ్ యొక్క రూపం;

ఇది లిఫ్ట్పార్టు అని పిలువబడే స్విచ్ తరగతికి చెందినది. ఇది ఒక బేస్ లీడ్ లేకుండా ఒక జంక్షన్ టీచానిపార్ట్ లాగా (ఇది రెండు ప్రధాన పరికరం) మరియు ఒక నిర్దిష్ట ఒట్టేజి వద్ద విచ్చిన్నాం ద్వారా దాని స్విచ్చింగ్ చర్యను నెరవేరుస్తుంది. నాలుగు-పొర దయోఫ్లు అని పిలువబడే ఇలాంటి మోడ్ అవరేషన్సో నాలుగు లేయర్ పరికరాలు కూడా ఉన్నాయి. DIAC

అనేది ఒక పూర్తి-వేవ్ లేదా ద్యు-దిశాత్మక సెమీకండక్షర్ స్విచ్, ఇది రెండు ముందుకు మరియు రివర్స్ ధీరువణాలపై ప్రారంభించబడుతుంది.

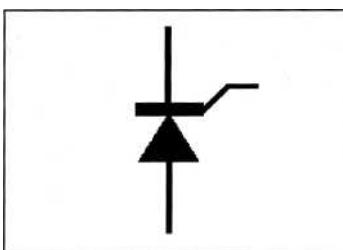
డయోడ్ ప్రత్యామ్నాయ ప్రస్తుత పదాల సంకోచం నుండి DIAC దాని పేరును పొందుతుంది.

AC స్వీచ్‌లో ఉపయోగించినప్పుడు కూడా TRIAC యొక్క టీరిస్టర్లు కూడా పేరీత్తపొంచడానికి DIAC విస్తృతంగా ఉపయోగించబడుతుంది. DIAC లు ప్రధానంగా మసకబారిన అనువర్తనాల్లో మరియు షార్టర్ సర్క్యూట్లలో లార్ ఫోర్సాగ్‌సంట్ దీపాలలో ఉపయోగిస్తారు.

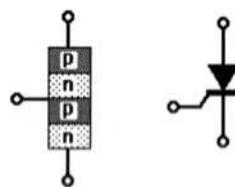

Triac

The triode AC switch (TRIAC) is a power-switching device as is the SCR. The TRIAC conducts currents in both directions while the SCR allows current in only one direction. A common application is for lighting controllers. In response to a trigger, the triac conducts until the AC voltage applied reaches zero, then blocks flow until the next trigger occurs. Since a trigger can cause it to trigger current in either direction, it is an efficient power controller from essentially zero to full power. TRIACs are used in a number of applications. However they tend not to be used in high power switching applications - one of the reasons for this is the non-symmetrical switching characteristics. For high power applications this creates a number of difficulties, especially with electromagnetic interference.

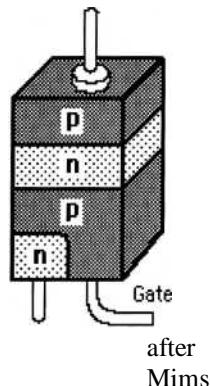
However TRIACs are still used for many electrical switching applications:


- Domestic light dimmers
- Electric fan speed controls
- Small motor controls
- Control of small AC powered domestic appliances
- The TRIAC is an electronic component that is widely used in many circuit applications, ranging from light dimmers through to various forms of AC control. It is generally only used for lower
- The TRIAC is easy to use and provides cost advantages over the use of two thyristors for many low power applications. Where higher powers are needed, two thyristors placed in “anti-parallel” are almost always used.
- power applications, thyristors generally being used for the high power switching circuits.

ప్రయోగ్ ఎన్సి స్విచ్ (TRIAC) అనేది SCR వలె పవర్-స్విచింగ్ పరికరం. TRIAC రెండు దిశలలో ప్రవాహాలను నిర్వహిస్తుంది, SCR ప్రస్తుత ఒకే దిశలో ప్రస్తుత అనుమతిస్తుంది. లైటింగ్ కంటర్లర్స్ కోసం ఒక సాధారణ అనువర్తనం. ఒక టీరిగ్గరు ప్రతిస్పందనగా, సున్నాకి వర్తించే AC వోల్టేజ్ వరకు టీరియాక్ నిర్వహిస్తుంది, తరువాతి టీరిగ్గర్ వచ్చేవరకు భ్లాక్స్ ప్రవాహం జరుగుతుంది. ఒక టీరిగ్గర్ ప్రస్తుత దిశలో ప్రస్తుత టీరిగ్గరు ఏర్పరుస్తుంది కాబట్టి, ఇది పూర్తిగా శక్తినించి పూర్తి శక్తికి సమర్థవంతమైన శక్తి నియంత్రికగా ఉంటుంది. అనేక పద్ధతుల్లో TRIAC లు ఉపయోగించబడతాయి. అయినప్పటికీ వారు అధిక శక్తి మార్పిడి అనువర్తనాల్లో ఉపయోగించరాదు - దీనికి కారణాలు ఒకటి కానీ సుమంతిక మార్పిడి లక్షణాలు. అధిక శక్తి అనువర్తనాలకు ఇది చాలా కషాలను సృష్టిస్తుంది, ముఖ్యంగా విద్యుదయస్కాంత జోక్యంతో. అయినప్పటికీ TRIACs ఇప్పటికీ అనేక విద్యుత్ మార్పిడి అనువర్తనాలకు ఉపయోగించబడుతున్నాయి: • దేశీయ తేలికపాటి dimmers • ఎలక్ట్రిక్ అభిమాని వేగం నియంత్రణలు • చిన్న మోటార్ నియంత్రణలు • చిన్న AC పవర్ గృహోపకరణాల నియంత్రణ • TRIAC అనేది ఒక ఎలక్ట్రానిక్ భాగం, ఇది పలు సర్వ్యాచ అనువర్తనాల్లో విస్టృతంగా ఉపయోగించబడుతుంది, కాంతి పరిమాణాల నుంచి AC నియంత్రణ వివిధ రూపాల్లో ఉంటుంది. ఇది సాధారణంగా తక్కువగా ఉపయోగించబడుతుంది • TRIAC ఉపయోగించడానికి చాలా సులభం మరియు చాలా తక్కువ శక్తి అనువర్తనాల కోసం రెండు thyristors ఉపయోగం మీద ఖర్చు ప్రయోజనాలు అందిస్తుంది. అధిక శక్తులు అవసరమైతే, "వ్యతిరేక సమాంతర" లో ఉంచబడిన రెండు నీల సంహరాలు దాదాపు ఎల్లప్పుడూ ఉపయోగించబడతాయి. • విద్యుత్ అనువర్తనాలు, హైప్ప్ స్విచ్ సర్వ్యాట్ల కోసం ఛైరిష్టల్ సాధారణంగా వాడుతున్నారు.



Symbol of TRIAC


Silicon Control Rectifier

The SCR is a power-switching device commonly used for lighting control, motor speed control and other variable power applications.

The silicon-controlled rectifier is like a junction transistor with a fourth layer and therefore three p-n junctions. The two outer junctions are forward biased by the voltage as shown, but the inner junction is reverse biased. A small current in the gate electrode can turn on the current, and it will stay on until the driving voltage is removed. It is called a rectifier because it conducts current in only direction. If AC voltage is applied, then it can be turned on by a pulse and remain on until the end of that half cycle. Timed 60 Hz triggers can be used to control power by changing the trigger point within the half cycle.

సిలికాన్ నియంత్రిత రెఫ్లైట్యూయర్ ఒక జంక్షన్ టీరానిప్పర్ వలె నాలుగవ పారను కలిగి ఉంటుంది, అందువలన మూడు P- ఎన్ జంక్షన్లు ఉంటాయి. రెండు బాహ్య జంక్షన్లు వోల్టేజ్ ద్వారా ముందుగా పక్కపాతం చెందాయి, అయితే అంతర్ధత జంక్షన్ వెనుకబడి ఉంది. గేట్ ఎలెక్ట్రోలో ఒక చిన్న ప్రవాహం ప్రస్తుతం ప్రారంభించవచ్చు మరియు డైరైవింగ్ వోల్టేజ్ తోలగించబడేవరకు ఇది కొనసాగుతుంది. ఇది ఒక దిద్దుబాటు అని పిలుస్తారు, ఎందుకంటే అది దిశలో మాత్రమే ప్రస్తుతాన్ని నిర్వహిస్తుంది. AC వోల్టేజ్ వర్తించబడితే, అది పల్నా ద్వారా ప్రారంభించబడుతుంది మరియు ఆ సగం చక్రం చివరి వరకు కొనసాగుతుంది. సగం చక్రంలో టీరిగ్డర్ పాయింటును మార్చడం ద్వారా 60 Hz టీరిగ్డర్ సైమ్ చేయబడుతుంది.

APPLICATIONS OF THYRISTOR

Thyristors are mainly used in devices where the control of high power, possibly coupled with high voltage is demanded. Their operation makes them suitable for use in medium to high-voltage AC power control applications, for example lamp dimming, controllers and motor control.

THYRISTER యొక్క అప్లికేషన్లు క్రిషెష్టర్ అధిక శక్తి యొక్క నియంత్రణ, బహుశా అధిక వోల్టేజ్సో జత చేయబడిన పరికరాల్లో ప్రధానంగా ఉపయోగిస్తారు. వారి ఆపరేషన్ మీడియం, అధిక వోల్టేజ్ AC శక్తి నియంత్రణ అనువర్తనాలకు ఉపయోగం కోసం

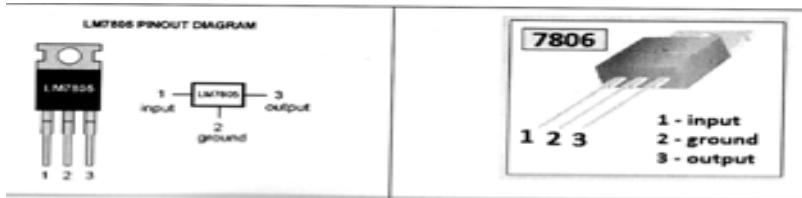
వాటిని అనుకూలం చేస్తుంది, ఉదాహరణకి దీపం అస్పష్ట, నియంత్రికలు మరియు మోటార్ నియంత్రణ.

Practical: Identify the Fixed Voltage Regulators

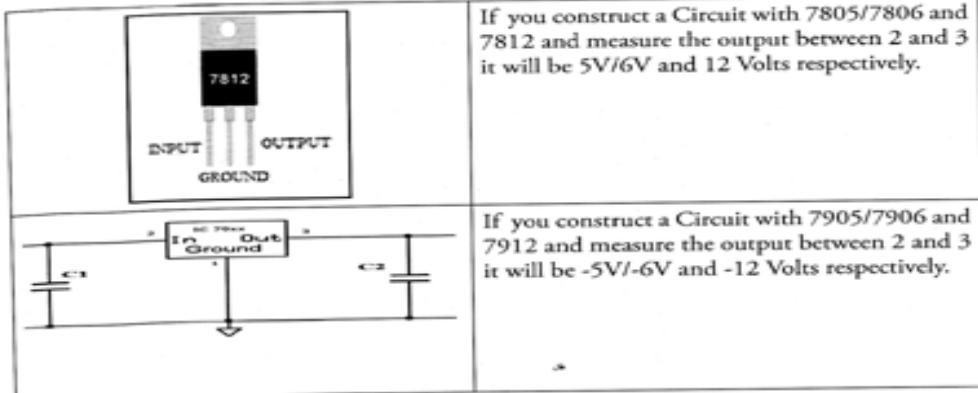
శ్రీ వోల్టేజ్ నియంత్రకాలను గుర్తించండి

Fixed Voltage Regulators

These regulators provide a constant output voltage. A popular example is the 7805 IC which provides a constant 5 volts output. A fixed voltage regulator can be a positive voltage regulator or a negative voltage regulator. A positive voltage regulator provides with constant positive output voltage. All those IC's in the 78XX series are fixed positive voltage regulators. In the IC nomenclature - 78XX ; the part XX denotes the regulated output voltage the IC is designed for. Examples:- 7805, 7806, 7809 etc. The regulated Output in 7805, 7806 AND 7809 is 5 V, 6 V and 9V respectively.


A negative fixed voltage regulator is same as the positive fixed voltage regulator in design, construction & operation. The only difference is in the polarity of output voltages. These IC's are designed to provide a negative output voltage.

శ్రీ వోల్టేజ్ నియంత్రకాలు ఈ నియంత్రకాలు శ్రీరమైన ఉత్పత్తి వోల్టేజ్ను అందిస్తాయి. ఒక ప్రసిద్ధ ఉదాహరణ 7805 IC, ఇది శ్రీరమైన 5 వోల్టు ఉత్పత్తిని అందిస్తుంది. శ్రీ వోల్టేజ్ నియంత్రకం అనుకూల ఒల్డేజి నియంత్రకం లేదా ప్రతికూల వోల్టేజ్ నియంత్రకం కావచ్చ. అనుకూల ఒల్డేజి నియంత్రకం నిరంతర అనుకూల ఉత్పత్తి వోల్టేజ్టో అందిస్తుంది. 78XX సిరీస్ అన్ని IC లు సానుకూల వోల్టేజ్ నియంత్రకాలు శ్రీరంగా ఉన్నాయి. IC నామకరణం - 78XX; భాగం XX IC రూపొందించిన నియంత్రిత ఉత్పత్తి వోల్టేజ్ సూచిస్తుంది. ఉదాహరణలు: 7805, 7806 మరియు 7809 లో నియంత్రించబడిన అవుట్టుట్ వరుసగా 5 V, 6 V మరియు 9V. ప్రతికూల శ్రీ వోల్టేజ్ నియంత్రకం రూపకల్పన, నిర్మాణం & ఆపరేషన్ సానుకూల శ్రీ వోల్టేజ్ నియంత్రకం వలె ఉంటుంది. ఒకే వ్యత్యాసం అవుట్టుట్ వోల్టేజ్ ధీరువణంలో ఉంది. ఈ IC లు నెగటివ్ అవుట్టుట్ వోల్టేజ్ను అందించడానికి రూపొందించబడ్డాయి.


Example:- I 7905, 7906 and all those IC's in the 79XX series. The regulated Output in 7905, I 7906 AND 7909 is - 5 V, - 6 V and - 9V respectively.

ఉదాహరణ: - | 7905, 7906 మరియు అన్ని IC యొక్క 79XX సిరీస్. నియంత్రిత అవుట్టుట్ 7905 లో. నేను 7906 మరియు 7909 ఉంది - 5 V, - 6 V మరియు - 9V వరుసగా.

I Identify the pin diagram of Voltage regulator ICs

Practical: Construct A 5 V Regulator Circuit with 7805

Transformer T1

Bridge Rectifier

Regulator

Practical: Construct A 5 V Regulator Circuit with 7805

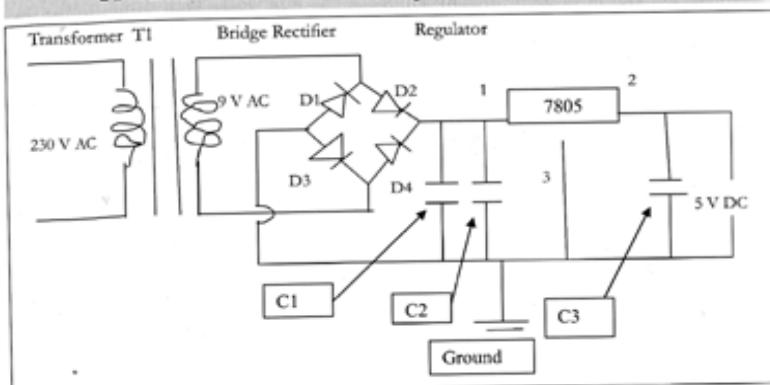


Figure 7.21: 5V Regulator Circuit

Parts List for a 5V Regulator Circuit

1. T-1 Step down Transformer-230 V (Primary), 9V Secondary -2A
2. Bridge rectifier is with 4 diodes 1N 4007
3. Capacitors C1=470 MF –Electrolytic
4. Capacitor C2 and C3 = 01MF Ceramic
5. IC 7805=5V Regulator IC

Construction and working

Assemble the circuit either on a bread board or a PCB. Make the connections by soldering if using PCB. PCB is better as soldering practise can't be done on the Bread board.

Working

The Step down Transformer converts 230 V Mains AC to 9 V AC from the transformer. The Bridge circuit formed by FOUR DIODES act as a FULL WAVE RECTIFIER and gives an unregulated output slightly less than 9 V which has lot of ripples. The C1 acts as a filter and removes the ripples and cleans the DC Voltage but it is fluctuating as the source mains fluctuates. The IC 7803 gives 5V DC regulated OUTPUT.

రోష్టు బోర్డు లేదా ఒక పిసిబిలో సర్క్యూట్లు సమీకరించండి. PCB వుపయోగిస్తే, టంగుట ద్వారా కనెక్టన్లను చేయండి. బోర్డు మీద టంకం సాధన చేయలేదు, PCB ఉత్సుకుమం.

వరిగ్యంగ్

టీరాన్ డోన్ టీరానాన్ రైర్ టీరానాన్ రైర్ నుండి 230 v మెయిన్స్ ఆస్ కు 9 v AC ను మారుస్తుంది. బోర్డు సర్క్యూట్ FOUR డయోడ్లు ఒక పూర్తి WAVE RECTIFIERగా రూపొందిస్తుంది మరియు ఇస్తుంది మరియు క్రమబద్ధికరించని అవుట్టుట్ చాలా తక్కువగా ఉండే 9 v కంచే తక్కువగా ఉంటుంది. C1 ఒక లీటరు వలె పనిచేస్తుంది మరియు DC వోల్టేజ్సు శుభ్రపరుస్తుంది మరియు శుభ్రపరుస్తుంది, కానీ మూలం లాభాలు పొచ్చుతగ్గులకు గురవుతుంటాయి. IC 7803 5V DC నియంత్రిత OUTPUT ను అందిస్తుంది.

Testing- Measure the Voltages and record them at the following points

- At the input Primary Voltage=
- At the out put of the Transformer Secondary Voltage=
- At the output of the bridge rectifies
- At the Output of the 7805

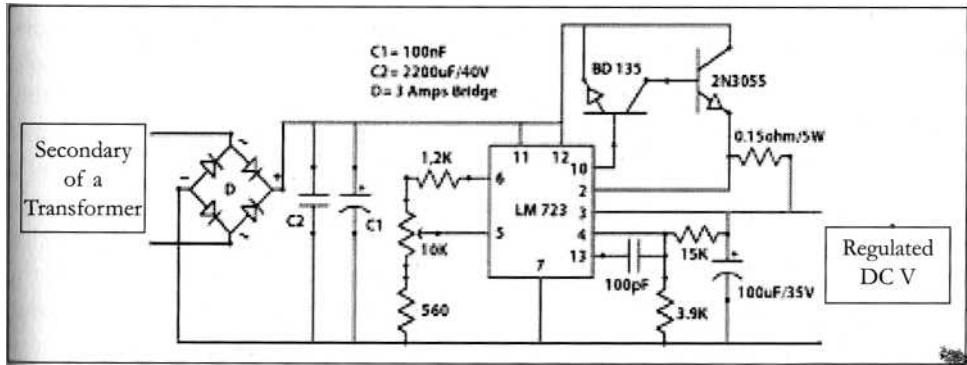


Figure 7.22: Variable Power Supply with 723

Assemble the circuit as shown above.

చెప్పింగ్ - వోల్టేజెస్సు కొలిచండి మరియు వాటిని ఈ కీరింది విషయాలలో నమోదు చేయండి

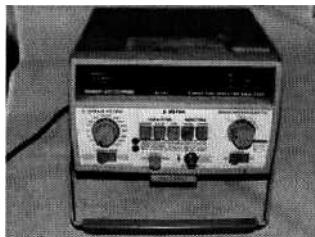
ఇన్స్ట్రుక్చన్లు - వోల్టేజ్ వద్ద

టీరాన్సిఫిర్ సెకండరీ వోల్టేజ్ = అవ్యాప్తి అష్ట వద్ద
వంతెన యొక్క అవ్యాప్తి వద్ద సరిదిద్దుతుంది

7805 యొక్క అవ్యాప్తి వద్ద

Practical: Construct a Variable Voltage Regulator using IC 723 and observe the OZP of Regulator output by varying the Input Voltage

Put Heat Sinks on Transistor 2N 3055 . This is a Power Transistor to handle large currents. OF 2 A.


Voltage can be adjusted by Potentiometer of 10 K across Pin 5&6 of IC 723..

Tire Bridge Rectifier should be connected to 3 A Transformer. Can make the bridge rectifier by using 4 Diodes of 1N5402.

టీరాన్సిపర్ 2N 3055 మీద హీట్ సింక్సు ఉంచండి. పెద్ద విద్యుత్తులను నిర్వహించడానికి ఇది ఒక పవర్ టీరాన్సిపర్. 2 ఎ. IC 723 లో పిన్ 5 & 6 అంతటా 10 కిలోమిటర్ పవర్టోమిటర్ ద్వారా వోల్టేజ్ సర్పుబాటు చేయబడుతుంది. స్క్రీన్ బెరిట్ టీరిఫిర్ 3 టీరాన్సిఫిర్ కు కనెక్ట్ చేయాలి. 1N5402 యొక్క 4 డయోడ్లను ఉపయోగించడం ద్వారా వంతెన ప్రతిక్షేపణను చేయగలదు.

LCR METER

LCR-meter

An LCR meter is a piece of electronic test equipment used to measure the inductance (L), capacitance (C), and resistance (R) of a component. In the simpler versions of this instrument the true values of these quantities are not measured; rather the impedance is measured internally and converted for display to the corresponding capacitance or inductance value. Readings will be reasonably accurate if the capacitor or inductor device under test does not have a significant resistive component of impedance. More advanced designs measure true inductance or capacitance, and also the equivalent series resistance of capacitors and the Q factor of inductive components.

Usually the device under test (DUT) is subjected to an AC voltage source. The meter measures the voltage across and the current through the DUT. From the ratio of these the meter can determine the magnitude of the impedance. The phase angle between the voltage and current is also measured in more advanced instruments; in combination with the impedance, the equivalent capacitance or inductance, and resistance, of the DUT can be calculated and displayed. The meter must assume either a parallel or a series model for these two elements. The most useful assumption, and the one usually adopted, is that LR measurements have the elements in series (as would be encountered in an inductor coil) and that CR measurements have the elements in parallel (as would be encountered in measuring a capacitor with a leaky dielectric). An LCR meter can also be used to judge the inductance variation with respect to the rotor position in permanent magnet machines (however care must be taken as some LCR meters can be damaged by the generated EMF produced by turning the rotor of a permanent-magnet motor).

Hand held LCR meters typically have selectable test frequencies of 100 Hz, 120 Hz, 1 kHz, 10 kHz, and 100 kHz for top end meters. The display resolution and measurement range capability will typically change with test frequency.

Benchtop LCR meters typically have selectable test frequencies of more than 100 kHz. They often include possibilities to superimpose a DC voltage or current on the AC measuring signal. Lower end meters offer the possibility to externally supply these DC voltages or currents while higher end devices can supply them internally. In addition benchtop meters allow the usage of special fixtures to measure SMD components, air-core coils or transformers.

ఒక LCR మీటర్ అనేది ఇండక్షన్ (ఎల్), కెపాసిచెన్స్ (సి) మరియు ఒక భాగం యొక్క ప్రతిషుటున (R) లను కొలిచే ఎలక్ట్రానిక్ చెప్పు పరికరాల భాగం. ఈ పరికరం యొక్క సరళమైన సంసురణల్లో ఈ పరిమాణాల యొక్క నిజమైన విలువలు లెక్కించబడవు; బదులుగా అవరోధం అంతర్గతంగా కొలుస్తారు మరియు సంబంధిత పరిమితి లేదా ఇండక్షన్ విలువకు ప్రదర్శన కోసం మార్గాలుడుతుంది. పరీక్షలో ఉన్న కెపాసిటర్ లేదా ఇండక్షరు పరికరం నిరోధకత యొక్క ఒక ముఖ్యమైన రెసిఫీటివ్ కాంపోనెంట్ లేనటయితే రీడింగ్స్ సహాతుకంగా ఖచ్చితమైనదిగా ఉంటుంది. మరింత అధునాతన నమూనాలు నిజమైన ఇండక్షన్ లేదా కెపాసిచెన్స్ కొలుస్తాయి మరియు కెపాసిటర్లు యొక్క సమానమైన సిరీస్ నిరోధకత మరియు పేరేరక భాగాల యొక్క రూ కారకం.

సాధారణంగా పరీక్షలో ఉన్న పరికరం (DUT) AC వోల్టేజ్ మూలానికి లోపించి ఉంటుంది. DUT ద్వారా మీటర్ అంతటా వోల్టేజ్ మరియు ప్రస్తుతను కొలుస్తుంది. ఈ మీటర్ యొక్క నిమిషత్తు నుండి పేరేరణ యొక్క పరిమాణాన్ని నిర్ణయించవచ్చు. వోల్టేజ్ మరియు ప్రస్తుత మధ్య దశ కోణం మరింత ఆధునిక పరికరాలలో కూడా కొలుస్తారు; ఇంపెడెన్స్ కలిపి, సమానమైన కెపాసిచెన్స్ లేదా ఇండక్షన్, అనిల్ రెసిష్చన్స్, DUT యొక్క గణన మరియు ప్రదర్శించబడతాయి. ఈ రెండు అంశాలకు మీటర్ ఒక సమాంతర లేదా శరేణి నమూనాను తీసుకోవాలి. అత్యంత ఉపయోగకరమైన భావన, సాధారణంగా దత్తత తీసుకున్న అనీల్, LR కొలతలు శరేణిలోని మూలకాలు (ఒక ఇండక్షర్ కాయల్లో ఎదుర్కొన్నట్లు) మరియు CR కొలతలు సమాంతరంగా ఉన్న అంశాలను కలిగి ఉంటాయి (ఒక కెపాసిటర్ ను లీకీ విద్యుద్వాహకము). శాశ్వత అయస్కాంత యంతీర్ణాల్లోని రోటర్ ప్లానానికి సంబంధించి ఒక LCR మీటరును కూడా ఉపయోగించుకోవచ్చు (అయితే కొన్ని LCR మీటర్లు రోటర్లను శాశ్వత-అయస్కాంత మోటార్లు తిరిస్తే ఉత్సవం చేయబడిన EMF ద్వారా దెబ్బతింటుండడంతో జాగ్రత్త తీసుకోవాలి.).

హ్యాండ్ నిర్వహించిన LCR మీటర్లు సాధారణంగా 100 Hz, 120 Hz, 1 kHz, 10 kHz మరియు టాప్ ఎండ్ మీటర్ల కోసం 100 kHz యొక్క పరీక్ష పోనఃపున్యాలను కలిగి ఉంటాయి. ప్రదర్శన స్పష్టత మరియు కొలత శరేణి సామర్థ్యం సాధారణంగా పరీక్ష పోనఃపున్యంతో మారుతుంది.

Benchtop LCR మీటర్లు సాధారణంగా 100 kHz కన్నా ఎక్కువ ఎంచుకోగల పరీక్ష పోనఃపున్యాలను కలిగి ఉంటాయి. AC విద్యుత్ కొలిచే సిగ్నల్లో ఒక DC వోల్టేజ్ లేదా విద్యుత్తును సూపరిట్స్ చేయడానికి అవకాశాలను కలిగి ఉంటాయి. దిగువ ముగింపు మీటర్లు ఈ DC వోల్టేజ్లను లేదా ప్రవాహాలను బాహ్యంగా సరఫరా చేయడానికి అవకాశాన్ని అందిస్తాయి, అయితే అధిక ముగింపు పరికరాలు వాటికి అంతర్ధతంగా సరఫరా చేయగలవు, అదనంగా benchtop మీటర్లు ప్రత్యేక FIXTURES io కొలత SMD భాగాలు, ఎయిర్-కోర్ కాయల్స్ లేదా టీరానాపర్చుర్లు యొక్క వినియోగాన్ని అనుమతిస్తుంది .

Bridge circuits

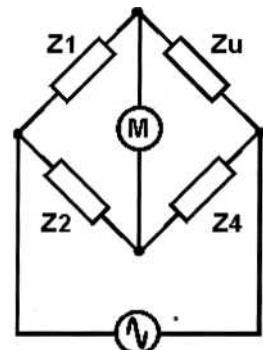
Inductance, capacitance, resistance, and dissipation factor can also be measured by various bridge circuits. They involve adjusting variable calibrated elements until the signal at a detector becomes null, rather than measuring impedance and phase angle.

Early commercial LCR bridges used a variety of techniques involving the matching or “nulling” of two signals derived from a single source. The first signal was generated by applying the test signal to the unknown and the second signal was generated by using a combination of known-value R and C standards. The signals were summed through a detector (normally a panel meter with or without some level of amplification). When zero current was noted by changing the value of the standards and looking for a “null” in the panel meter, it could be assumed that the current magnitude through the unknown was equal to that of the standard and that the phase was exactly the reverse (180 degrees apart). The combination of standards selected could be arranged to read out C and DF directly which was the precise value of the unknown standard. An example of this is the GenRad/IET Labs Model 1620 and 1621 Capacitance Bridges.

- Bridge method:** This method uses a bridge which is balanced. At the balance point the bridge component positions can be used to determine the value of the component under test. This method is typically used for lower frequency measurements - often measurement frequencies of up to 100 kHz or so are used

In bridge method uses a Wheatstone bridge configuration in which the device under test, DUT, is placed in a bridge circuit

The DUT impedance is represented by Z_u in the circuit. The impedance Z_2 and Z_3 are known. The oscillator circuit generally operates at frequencies up to about 100 kHz and can usually be selected before the test.


Then Z_1 can be changed until no current flows through D. This is the balance position for the bridge. At this point the four impedances in the circuit obey the equation:

This basic bridge circuit is sometimes used on its own in very primitive LCR meters. Some very old instruments actually have the elements that are manually balanced. However technology has moved on and higher levels of integration coupled with operational amplifier circuitry enable accurate automated versions of the circuit to be used.

బెరిథ్ సర్క్యూట్లు

ఇండక్షన్స్, కెపాసిచెన్స్, రెసిష్చన్స్, మరియు డిలీఫ్న ఫ్యాక్టర్లను కూడా వివిధ వంతెన సర్క్యూట్ ద్వారా కొలవవచ్చు. వారు గుర్తించదగ్గ వేరియబుల్ క్రమాంకృత అంశాలని సర్పుబాటు చేస్తారు, ఇవి ఒక డిపెక్షర్ వద్ద సంకేతాలను నిలువుగా మరియు దశ కోణాన్ని కొలవకుండా కాకుండా శూన్యంగా మారుతాయి.

పీరారంభ వాణిజ్య LCR వంతెనలు ఒక సోర్స్ నుండి ఉత్పన్నమైన రెండు సిగ్నల్స్ యొక్క సరిపోతే లేదా "నల్లింగ్" ను కలిగి ఉన్న పలు పద్ధతులను ఉపయోగించాయి. తెలియని సిగ్నలు అన్వయించడం ద్వారా మొదటి సిగ్నల్ ఉత్పత్తి చేయబడింది మరియు తెలిసిన-విలువ R మరియు C ప్రమాణాల కలయికను ఉపయోగించి రెండవ సంకేతం రూపొందించబడింది. సంకేతాలను ఒక శోధన ద్వారా వాడతారు (సామాన్యంగా ప్యానల్ మీటర్ లేదా కొంత షాయి విస్తరణ లేకుండా). ప్రమాణాల విలువను మార్పడం మరియు ప్యానల్ మీటర్లో "శూన్యం" కోసం వెతుకుతున్నప్పుడు సున్నా ప్రవాహం గుర్తించబడినప్పుడు, తెలియని ప్రవాహం యొక్క ప్రస్తుత

Basic bridge based LCR meter configuration

$$Z_{u1} = \left(\frac{Z_3}{Z_2} \right) Z_1$$

పరిమాణానికి సమాంతరంగా ఉంటుంది మరియు ఈ దశ సరిగ్గా రివర్స్ (180 డిగ్రీల వేరుగా). ఎంపిక ప్రమాణాల సమ్మేళనం C మరియు DF లను ప్రత్యక్షంగా చదవటానికి ఏర్పాటు చేయబడవచ్చు, ఇది తెలియని పీరామాణిక ఖచ్చితమైన విలువ. దీనికి ఉదాహరణగా GenRad / IET ల్యాబ్స్ మోడల్ 1620 మరియు 1621 కాపెసిచెన్స్ బెరిథ్ ఉంది.

- వంతెన పద్ధతి: ఈ పద్ధతి సమతుల్యత కలిగిన వంతెనను ఉపయోగిస్తుంది. బ్యాలెన్స్ పొయింట్ పద్ధతి కింద భాగం యొక్క విలువను గుర్తించేందుకు వంతెన భాగం షాంటాలను ఉపయోగించవచ్చు. ఈ పద్ధతి సాధారణంగా తక్కువ శేషఃపున్యం కొలతలకు ఉపయోగిస్తారు - తరచూ కొలత పోనఃపున్యాలు

కు 100 kHz లేదా అల్ఱా ఉపయోగిస్తారు

వంతెన పద్ధతిలో ఏట్ న్స్ వంతెన ఆకృతీకరణను ఉపయోగిస్తుంది, దీనిలో పరీక్షలో ఉన్న పరికరం, DUT, ఒక వంతెన సర్క్యూట్ ఉంచబడుతుంది DUT అవరోధం సర్ పద్ధ ఇం ఏరాతెనిధ్యం వహిస్తుంది. నిరోధం Z2 మరియు Z3 అంటారు. ఒసిలేటర్ సర్క్యూట్ సాధారణంగా సుమారు 100 kHz వరకు శేషఃపున్యాల పద్ధ పనిచేస్తుంటుంది మరియు సాధారణంగా పరీక్షకు ముందు ఎంపిక చేయబడుతుంది.

అప్పుడు M1 ద్వారా ప్రస్తుత ప్రవాహాల వరకు Z1 మార్పివచ్చు. ఇది వంతెన కోసం బ్యాలెన్స్ షాంటం. ఈ సమయంలో సర్క్యూట్ లోని నాలుగు అవరోధాలు సమీకరణానికి కట్టుబడి ఉంటాయి:

ఈ ఏరాధమిక వంతెన సర్క్యూట్ కోన్నిసార్లు చాలా ఏరాచేసమైన LCR మీటర్ల లోనే ఉపయోగించబడుతుంది. కోన్ని పాత వాయిద్యాలు నిజానికి మానవీయంగా సమతుల్యత గల అంశాలను కలిగి ఉంటాయి. ఏదేమైనా, చైక్కాలజీ విస్తరించింది మరియు ఏకీకరణ యొక్క అధిక షాంటులతో పాటు కార్బోచరణ యాంఫిషైయర్ సర్క్యూరి సర్క్యూట్ యొక్క ఖచ్చితమైన ఆటోమేచెడ్ వెర్షన్లను ఉపయోగించడం ఏరారంభించింది.

Inverters and UPS

ఇన్వెర్టర్స్ మరియు UPS

Various types of batteries used in UPS and Inverters and their maintenance. Different types of inverter, UPS, Working principle, specifications, explanation with the help of block diagram.

UPS మరియు ఇన్వెర్టర్స్ మరియు వారి నిర్వహణలో ఉపయోగించే వివిధ రకాల బ్యాటరీలు. వివిధ రకాలైన ఇన్వెర్టర్స్, యుపిఎస్, వరికుంగ్ సూత్రం, సైసిఫికేషన్లు, భ్లాక్ డయాగ్రామ్ సహయంతో వివరణ.

FUNCTION OF AN INVERTER

As the name suggests DC to AC inverter is an electronic device which is able to convert a DC potential normally derived from a lead-acid battery into a stepped-up AC potential which may be quite comparable to the voltage that is found in our domestic AC outlets.

An inverter normally may be divided into three important stages viz. oscillator, amplifier and the transformer output stage.

పేరు AC ఇన్వెర్టర్స్ డి.సి.ను సూచిస్తున్నట్లుగా ఒక ఎలక్ట్రానిక్ పరికరాన్ని చెప్పావచ్చు, ఇది ఒక డైసైన్ సంభావ్యతను సాధారణంగా ఒక ప్రధాన-యాసిడ్ బ్యాటరీ నుండి ఒక మెటల్-ఎసి సామర్థ్యం నుండి ఉత్పన్నం చేయగలదు, ఇది మా దేశీయ AC లో కనిపించే వోల్టేజ్యూ పోల్చుదగినది. అవుట్టెట్లు.

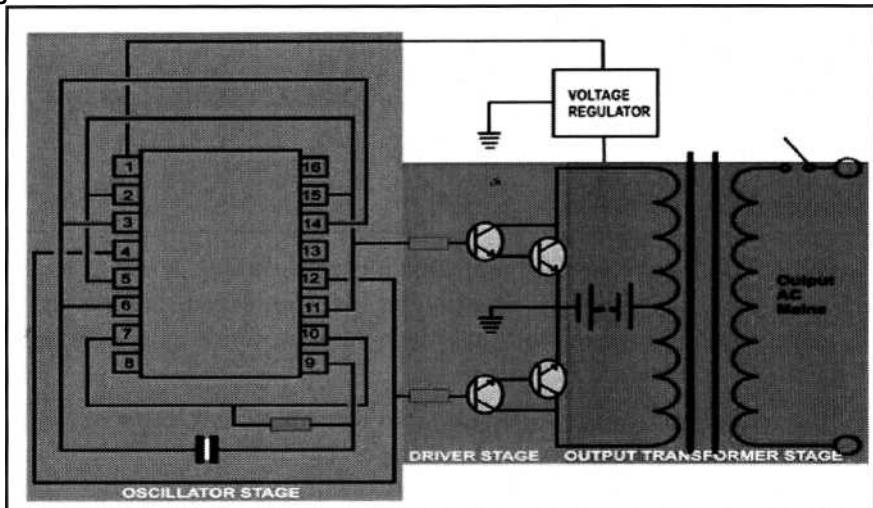
ఒక ఇన్వెర్టర్ సాధారణంగా మూడు ముఖ్యమైన దశలుగా విభజించబడుతప్పము. ఒసిలేటర్, యాంఫిషైయర్ మరియు టీరానాపర్కర్ అవుటుప్పు స్టేజ్.

- Oscillator:** This stage is basically responsible for the generation of oscillating pulses either through an IC circuit or a transistorized circuit. These oscillations are basically the productions of alternate battery positive and negative (ground) voltage peaks with a particular specified frequency (number of positive peaks per second.) Such oscillations are generally in the form of square pillars and are termed as square waves, and the inverters operating with such oscillators are called square wave inverters.

The above generated square wave pulses though are too weak and can never be utilized to drive high current output transformers. Therefore these pulses are fed to the next amplifier stage for the required task.

- ఒసిలేటర్:** ఈ దశ ఒక IC సర్క్యూట్ లేదా టీరానిప్పరైజ్ సర్క్యూట్ ద్వారా గాని ఉంగిసలాడే పప్పుల ఉత్పత్తికి ప్రధానంగా బాధ్యత వహిస్తుంది. ఈ డోలనాలు ప్రాథమికంగా నిర్దిష్ట నిర్దిష్ట పోనిపున్యంతో ప్రత్యోమ్మాయ బ్యాటరీ సానుకూల మరియు ప్రతికూల (గీరోండ్) వోల్టేజ్ శిఖరాల పెరోడక్షన్లు (సెకనుకు

అనుకూలంగా ఉన్న శిఖరాల సంఖ్య). ఇటువంటి డోలనాలు సాధారణంగా చదరపు స్తంభాల రూపంలో ఉంటాయి మరియు స్క్వోర్ తరంగాలు, మరియు అటువంటి ఆసిలేటర్లతో పనిచేసే ఇన్వర్టర్లు స్క్వోర్ వేవ్ ఇన్వర్టర్లు అని పిలుస్తారు.


పైన రూపాందించిన చదరపు తరంగ పప్పులు చాలా బలహీనంగా ఉన్నపుటికీ, అధిక ప్రస్తుత అవటుప్పట్ టీరాన్నాపుర్వుర్లను నడపడానికి ఎప్పటికీ ఉపయోగించబడవు. అందువల్ల ఈ పప్పులు అవసరమైన పని కోసం తదుపరి యాంప్లిఫైయర్ దశకు ఇవ్వాలి.

- **Booster or Amplifier (Driver):** Here the received oscillating frequency is suitably amplified to high current levels using either power transistors or Mbsfets. Though the boosted response is an AC, but is still at the battery supply voltage level and therefore cannot be used to operate electrical appliances which work at higher voltage AC potentials. The amplified voltage is therefore finally applied to the output transformer secondary winding.
- **booster లేదా యాంప్లిఫైయర్ (డీరైవర్):** ఇక్కడ పొందబడిన డోలనం ఫర్కెన్నీ పవర్ టీరాన్నిప్పర్లు లేదా MBSfets గాని ఉపయోగించి అధిక ప్రస్తుత ప్యాయిలకు సరిపోతుంది. పెరిగిన ప్రతిస్పందన ఒక AC అయితే, ఇప్పటికీ బ్యాటరీ సరఫరా వోల్టేజ్ ప్యాయిల్ ఉంది మరియు అందువలన అధిక వోల్టేజ్ AC సంభావ్యతతో పనిచేసే విద్యుత్ ఉపకరణాలను నిర్వహించడానికి ఉపయోగించలేదు. విస్తరించిన వోల్టేజ్ చివరికి అవటుప్పట్ టీరాన్నాపుర్వుర్ ద్వారా మూసివేతకు వర్తించబడుతుంది.
- **Output Transformer:** We all know how a transformer works; in Ac/ DC power supplies it is normally used to step-down the applied input mains AC to the lower specified AC levels through magnetic induction of its two windings. In inverters a transformer is used for similar purpose but with just opposite orientation, i.e. here the low level AC from the above discussed electronic stages is applied to the secondary windings resulting in an induced stepped up voltage across the primary winding of the transformer. This voltage is finally utilized for powering the various household electrical gadgets like lights, fans, mixers, soldering irons etc.

- అవట్టువుట్ టీరానాపుర్వీర్: మేము అన్ని టీరానాపుర్వీర్ పనిచేస్తుంది ఎలా; AC / DC పవర్ సరఫరాలో ఇది సాధారణంగా దరఖాస్తు ఇన్చుట్లు కీరిందికి వాడడానికి ఉపయోగించబడుతుంది

దాని రెండు మూసివేతల యొక్క అయస్కాంత వీరేరణ ద్వారా తక్కువ పేర్కొన్న AC ప్యాయిలకు మెయిన్స్ ఆసి ఉన్న టీరానాపుర్వీర్ ఒకే విధమైన ప్రయోజనం కోసం ఉపయోగించబడుతుంది, కానీ కేవలం వ్యతిరేక దిశలో ఉంటుంది, అనగా ఇక్కడ ఉన్న చర్చల ఎలక్ట్రానిక్ దశల నుండి తక్కువప్పాయి AC ని టీరానాపుర్వీర్ యొక్క వీరాధమిక మూసివేతలో వీరేరిత వోల్టేజ్ పీరేపించబడిన ద్వారా కవాటాలకు వర్తించబడుతుంది. ఈ వోల్టేజ్ చివరకు లైట్లు, అభిమానులు, మికనర్లు, టంకరింగ్ ఇన్సుమ్సు మొదలైన పలు గృహ విద్యుత్ గాడ్డట్లు శక్తినివ్వడానికి ఉపయోగించబడుతుంది.

Diagram of Inverter

Figure 8.1: Inverter Block Diagram

DC to AC Inverter, Repairing Tips

In the above explanation a couple of things become very critical for obtaining correct results from an inverter. Firstly the generation of the oscillations, due to which the process of voltage induction is able to take place across the windings of the transformer. The second important factor is the frequency of the oscillations, which is fixed as per the country's specifications, for example countries that supply 230 V, generally have a working frequency

of 50 Hz, in other countries where 120 V is specified mostly work at 60 Hz frequency.

Sophisticated electronic gadgets like TV sets, DVD players, computers etc. are never recommended to be operated with square wave inverters. The sharp rise and fall of the square waves are just not suitable for such applications.

However there are ways through more complex electronic circuits for modifying I lie square waves so that they become more favorable with the above discussed electronii equipment. Inverters using further complex circuits are able to produce waveforms almost identical to the waveforms available at our domestic mains AC, outlets.

- అవట్టువుట్ టీఎస్ఎస్ఎర్లైట్: మేము అన్ని టీఎస్ఎస్ఎర్లైట్ పనిచేస్తుంది ఎలా; AC / DC పవర్ సరఫరాలో ఇది సొధారణంగా దరఖాస్తు ఇన్సుట్టు క్రిందికి వాడడానికి ఉపయోగించబడుతుంది. దాని రెండు మూసివేతల యొక్క అయస్కాంత పేరేరణ ద్వారా తక్కువ పేర్కొన్న AC పోయిలకు మొయిన్ ఆస్. ఇన్వర్టర్లోను టీఎస్ఎస్ఎర్లైట్ ఒకే విధమైన ప్రయోజనం కోసం ఉపయోగించబడుతుంది, కానీ కేవలం వ్యతిరేక దిశలో ఉంటుంది, అనగా ఇక్కడ ఉన్న చర్చల ఎలక్ట్రానిక్ దశల నుండి తక్కువపోయి AC ని టీఎస్ఎస్ఎర్లైట్ యొక్క పేరాధమిక మూసివేతలో పేరేరిత వోల్టేజ్ పేరేరేపించబడిన ద్వారా కవాటాలకు వర్తించబడుతుంది. ఈ వోల్టేజ్ చివరకు లైట్లు, అభిమానులు, మిక్రోస్, టంకరింగ్ ఇనుము మొదలైన పలు గృహ విద్యుత్ గాఢెట్లు శక్తినివ్యాధానికి ఉపయోగించబడుతుంది.

How to Repair an Inverter

Inverter is “Dead”- Check battery voltage and connection, check for a blown fuse. If that’s OK, open the inverter outer cover and perform the following:

Locate the oscillator section; disconnect its output from its preceding stage and using a frequency meter confirm its proper working. No frequency or a stable DC indicates a possible fault with the stage. Check its IC and the associated components for the remedy.

In case you find the oscillator stage working fine, go for the next stage i.e. the amplifier stage. Check each device using a digital multimeter, you may have to completely remove them from the board for the particular tests. If you find a particular device to be faulty just replace it with a new one.

Sometimes transformers also become the major cause for a malfunction. Check for an open winding or a loose internal connection in the associated transformer. If you find it to be suspicious, immediately change it with a new one.

ఒక ఇన్వర్టర్ రిపేరు ఎలా :

ఇన్వోర్ డెడ్ - బ్యాటరీ ఎల్టెంజ్ మరియు కనెక్షన్లు తనిఖీ చేయండి, ఎరుబడిన పూజ్ కోసం తనిఖీ చేయండి. అది సరే ఉంటే, ఇన్వోర్ బాహ్య కవర్లు తెరిచి, కింది వాటిని జరపండి: ఒసిలేటర్ విభాగం గుర్తించండి; దాని ముందు దశ నుండి దాని అవుటుపుట్లు డిస్క్యూనెక్స్ చేసి, ఫర్మెంట్ నీస్ మీటర్లు దాని సరైన పనిని నిర్ధారించండి. ఎటువంటి శోసిపున్యం లేదా స్పిరమైన డిసిలు వేదికపై ఉన్న తప్పను సూచిస్తుంది. దానియొక్క IC మరియు దాని అనుబంధ భాగాలకు సంబంధించి తనిఖీ చేయండి. మీరు ఒసిలేటర్ దశ జరిమానా పని చేస్తే, తరువాతి దశకు వెళ్లండి అంటే యాంప్లిష్మెంటర్ దశకు వెళ్లండి. ఒక డిజిటల్ మల్టీమీటర్లు ఉపయోగించి ప్రతి పరికరాన్ని తనిఖీ చేయండి, మీరు నిర్దిష్ట పరీక్షలకు బోర్డు నుండి పూర్తిగా తోలగించాలన్న ఉంటుంది. ఒక నిర్దిష్ట పరికరాన్ని తప్పగా గుర్తించినట్లయితే, దాన్ని కొత్తగా భర్తి చేయండి. కొన్నిసార్లు మోసపూరితంగా టీరాన్నాప్రార్థుల్ ప్రధాన కారణం అయ్యాయి. అనుబంధ టీరాన్నాప్రార్థులో బహిరంగ మూసివేత లేదా వదులుగా ఉండే అంతర్భత కనెక్షన్ కోసం తనిఖీ చేయండి. మీరు దానిని అనుమానిస్పందంగా కనుగొన్నట్లయితే, వెంటనే దాన్ని కొత్తగా మార్చండి.

Maintenance of Inverter Batteries

Inverter batteries are called secondary batteries as these are rechargeable.

ఇన్వోషర్ బ్యాటరీన్ నిర్వహణ

ఇన్వోషర్ బ్యాటరీలు ద్వారీయ బ్యాటరీలు అంటారు, వీటిని రీచార్జ్ చేయగలవు.

Inspection

There are many tools that may help in caring for and maintaining batteries

ఇన్వోషర్

బ్యాటరీల సంరక్షణ మరియు నిర్వహించడంలో సహాయపడే అనేక ఉపకరణాలు ఉన్నాయి

Recommended Spares:

సిఫారుసు చేయబడిన

Wrench Voltmeter Hydrometer Post Cleaner Vaseline Goggles Gloves Baking Soda

రెంచ్ వోల్ట్‌మీటర్ హైడ్రాటిట్‌మీటర్ పోష్ట్ ఫ్లైనర్ వాసెలిన్ గాగుల్స్ బ్స్టోవ్ బెకింగ్ సోడా

Safety Tips

Always USE PERSONAL protective clothing, gloves, and goggles when handling batteries.

Batteries should be carefully inspected on a regular basis in order to detect and correct potential problems before they can do harm. It is a great idea to start this routine when the batteries are first received.

భద్రత చిట్టాలు

బ్యాటరీలను నిర్వహించడానికి ఎల్లప్పుడూ వ్యక్తిగత రక్షణ దుస్తులను, చేతి తోడుగులు, మరియు గాగుల్స్ ఉపయోగించాలి. సంభావ్య సమస్యలను గుర్తించడానికి మరియు సరిచేయడానికి వారు హోని చేయగల ముందు సరిచూసుకోవడానికి బ్యాటరీలను జాగ్రత్తగా తనిఖీ చేయాలి. బ్యాటరీలను మొదటిసారి అందుకున్నప్పుడు ఈ క్రమంలో వీరారంభించడానికి ఇది ఒక గొప్ప ఆలోచన.

Inspection Guidelines:

1. Examine the outside appearance of the battery

- ❖ Look for cracks in the container.
- ❖ The top of the battery, posts, and connections should be clean, free of dirt, fluids, and corrosion. If batteries are dirty, refer to the cleaning section for the proper cleaning procedure.
- ❖ Repair or replace any damaged batteries.

2. Any fluids on or around the battery may be an indication that electrolyte is spilling, leaching, or leaking out.

- ❖ Leaking batteries must be repaired or replaced.

3. Check all battery cables and their connections.

- ❖ Look closely for loose or damaged parts.
- ❖ Battery cables should be intact; broken or frayed cables can be extremely

dangerous.

- ❖ Replace any cable that looks suspicious.

4. Tighten all wiring connections. Make certain there is good contact with the terminals.

తనిఖీ మార్గదర్శకాలు:

1. బ్యాటరీ యొక్క వెలుపలి రూపాన్ని పరిశేలించండి
 - ❖ కంటైనర్లో పగుళ్లు చూడండి.
 - ❖ బ్యాటరీ, పోష్ట్ లు మరియు కనెక్టన్లు పైన ఉండాలి, మురికి, ఉదాలు, మరియు క్షయాలను పుఖ్యం చేయాలి. బ్యాటరీలు మరికిగా ఉంచే, స్క్రైన్ శుభ్రపరచడం ప్రక్కరియ కోసం పుఖ్యపరిచే విభాగాన్ని సూచించండి. ఇవ దెబ్బతిన్న బ్యాటరీలను రిపేర్ చేయండి లేదా భర్తీ చేయండి.
2. బ్యాటరీపై లేదా చుట్టూ ఉన్న ఏదైనా ఉదాలు ఎల్క్షెస్ట్రోల్ట్ మిగలకుండా, వడకట్టడం లేదా లీకింగ్ అవుతుందని సూచిస్తుంది.
 - ❖ లీకేజింగ్ బ్యాటరీలను మరమ్మతు చేయాలి లేదా భర్తీ చేయాలి.
3. అన్ని బ్యాటరీ తంతులు మరియు వాటి కనెక్టన్లను తనిఖీ చేయండి.
 - ❖ వదులుగా లేదా దెబ్బతిన్న భాగాలకు దగ్గరగా చూడండి.
 - ❖ బ్యాటరీ కేబుల్ని చెక్కుచెదరకుండా ఉండాలి; ఏరిగిన లేదా భయపడ్డ తంతులు చాలా ప్రమాదకరమైనవి. అనుమానాస్పదంగా కనిపించే ఏదైనా కేబుల్ని మార్చండి.
4. అన్ని ప్రైరింగ్ కనెక్టన్లను బిగించి. తెర్కినలోన్న మంచి సంబంధాలు ఉన్నాయని నిర్ధారించుకోండి.

Cleaning

Batteries seem to attract dust, dirt, and grime. Keeping them clean will help one spot trouble signs if they appear and avoid problems associated with grime.

1. Check that all vent caps are tightly in place.
2. Clean the battery top with a cloth or brush and a solution of baking soda and water.
 - ❖ When cleaning, do not allow any cleaning solution, or other foreign matter to get inside the battery.
3. Rinse with water and dry with a clean cloth.
4. Clean battery terminals and the inside of cable clamps using a post and clamp cleaner.
 - ❖ Clean terminals will have a bright metallic shine.
5. Reconnect the clamps to the terminals and thinly coat them with petroleum jelly (Vaseline) to prevent corrosion.

6. Keep the area around the batteries clean and dry.

శుభ్రపరచడం

బ్యాటరీలు దుమ్ము, ధూళి మరియు గరుకులను ఆకర్షించాయి. పరిశుభ్రంగా ఉంచడం వలన వారు ఒక స్టాట్ ఇబ్బంది చిహ్నంగా కనిపిస్తారు, ఇవి కనిపిస్తాయి మరియు గీరిమ్మి సంబంధించిన సమస్యలను నివారించవచ్చు.

1. అన్ని క్లైట్ పరిమితులు ప్రానంలో కలింగా ఉన్నాయని తనిభీ చేయండి.
2. ఒక వస్తుం లేదా బ్రెష్ట్ మరియు బేకింగ్ సోడా మరియు నీటితో ఒక బ్యాటరీ బ్యాటరీ టాప్ శుభ్రం చేయండి.
3. శుభ్రపరిచేటప్పుడు, ఏదైనా శుభ్రపరిచే పరిప్పారం లేదా ఇతర విదేశీ పదార్థం బ్యాటరీ లోపల పొందడానికి అనుమతించవద్దు.
4. ఒక పోష్ట్ మరియు బిగింపు క్లీనర్ ఉపయోగించి బ్యాటరీ బ్యాటరీ చెర్కెనల్ని మరియు కేబుల్ క్లాంప్ లోపల.
5. క్లీన్ చెర్కెనలోను ప్రకాశవంతమైన లోపపు మైన్ ఉంటుంది.
6. చెర్కెనల్లును క్లాంప్ ను రికనాపిం చేసుకోండి మరియు పాలీష్ జెల్లీ (వాసెలైన్) తో తుప్ప పట్టిన వాటిని తుప్ప నిరోధించడానికి.
7. బ్యాటరీలను చుట్టుప్రక్కల ఉంచండి.

Battery Safety Precautions

Lead-acid batteries contain sulphuric acid, which can cause severe burns besides generating hydrogen and oxygen during charging, the mixture of which can be explosive.

To help avoid risk of danger and injury, observe these precautions when handling or working with a lead-acid battery .

- Always store or recharge lead acid batteries in a well ventilated area away from sparks or open flames.
- When recharging or handling lead acid batteries, wear acid resistant goggles/,, shield, gloves, and if available, an apron.
- Always keep lead acid battery vent caps securely in place. However, while charging, it should be kept open.
- Never overcharge a lead acid battery and replenish electrolyte with battery grade distilled/ demineralised water only.
- Lead acid storage and charging areas should be posted with “Flammable” “No Smoking” signs.
- If acid gets into your eye(s), flush immediately with water for 15 minutes and then promptly seek medical attention.
- Emergency eye wash stations should be located near lead acid battery storage and charging areas.
- If acid gets on your skin, rinse the affected area immediately with large amounts of

water. Seek medical attention if the chemical burn appears to be second degree or higher.

బ్యాటరీ భద్రత జాగ్రత్తలు

లీడ్-యాసిడ్ బ్యాటరీలు సల్పూరీక్ ఆష్టం కలిగి ఉంటాయి, ఇది చార్టింగ్ సమయంలో ప్రైడ్ రీజన్ మరియు పేరాణవాయువును ఉత్పత్తి చేసేటప్పుడు తీవ్రమైన పేలుడులను కలిగించవచ్చు, ఇది మిశ్రమం యొక్క పేలుడు పదార్థం. ప్రమాదం మరియు గాయం ప్రమాదాన్ని నివారించడానికి, ప్రధాన-యాసిడ్ బ్యాటరీతో నిర్వహించడానికి లేదా పని చేస్తున్నప్పుడు ఈ జాగ్రత్తలు గమనించండి. ఎల్లప్పుడూ బాగా స్నేహితులు లేదా బహిరంగ ఫ్లైమ్స్ నుండి బాగా వెంటిలేషన్ పేరాంతంలో ప్రధాన ఆష్టం బ్యాటరీలను నిల్వ లేదా రీచార్డ్.

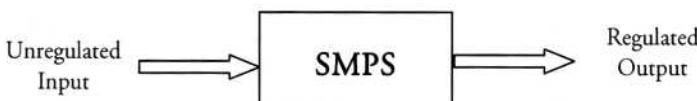
- లీడ్ యాసిడ్ బ్యాటరీలను రీచార్డ్ చేయడం లేదా నిర్వహించడం ఉన్నప్పుడు, ఆష్ట నిరోధక గాగల్స్ / హెయర్ మీల్ట్, చేతి తొడుగులు మరియు అందుబాటులో ఉన్నట్లయితే, ఆపరాన్సు ధరిస్తారు.
- ఎల్లప్పుడు లీడ్ యాసిడ్ బ్యాటరీ వెఫ్టార్ టోపీలను సురక్షితంగా ఉంచండి. అయితే, ఛార్జ్ చేస్తున్నప్పుడు, దానిని తెరచి ఉంచాలి.
- ఒక ప్రధాన యాసిడ్ బ్యాటరీని ఎక్కించుకోవద్దు మరియు బ్యాటరీ గీర్డ్ స్వేచ్ఛనం / డివినియలైచ్ నీటితో విద్యుద్వైషేషణను పునఃషోపించండి.
- యాసిడ్ నిల్వను లీడ్ మరియు చార్టింగ్ పేరాంతాల్లో "లేప్" "నో స్కోకింగ్" సంకేతాలతో పోష్ట్ చేయాలి.
- యాసిడ్ మీ కంటి (లు) లోకి ప్రవేశిస్తే, వెంటనే 15 నిమిషాల పాటు నీటితో శుభ్రం చేసుకోవాలి మరియు తక్కణమే వైద్య దృష్టిని కోరండి.
- అత్యవసర కంటి వాష్ ఫ్లైషన్ లెడ్ యాసిడ్ బ్యాటరీ నిల్వ సమీపంలో ఉండాలి చార్టింగ్ పేరాంతాలు. t
- యాసిడ్ మీ చర్చింపై పడినట్లయితే, పెద్ద మొత్తంలో నీరు వెంటనే ప్రభావితమైన పేరాంతాన్ని శుభ్రం చేయాలి. రసాయన మంట రెండవ డిగీరీ లేదా అంతకంటే ఎక్కువ ఉన్నట్లయితే వైద్య దృష్టిని కోరండి.

Switch Mode Power Supply

స్విచ్ మోడ్ పవర్ స్పెష్చ

BLOCK DIAGRAM OF SWITCH MODE POWER SUPPLIES AND THEIR WORKING PRINCIPLES

Power supply is an electronic circuit that is used for providing the electrical power to appliances or loads such as computers, machines, and so on. These electrical and electronic loads require various forms of power at different ranges and with different characteristics. So, for this reason the power is converted into the required forms (with desired qualities) by using some power electronic converters or power converters.


Electrical and electronic loads work with various forms of power supplies, such as AC power supply, AC- to-DC power supply, High-voltage power supply, Programmable power supply, Uninterruptable power supply and Switch-mode power supply.

విద్యుత్ సరఫరా అనేది ఎలక్ట్రానిక్ సర్క్యూట్, ఇది కంప్యూటర్లు, యంత్రాలు మరియు ఇతర వంటి ఉపకరణాలకు విద్యుత్ శక్తిని అందించడానికి ఉపయోగించబడుతుంది. ఈ విద్యుత్ మరియు ఎలక్ట్రానిక్ లోడ్లు వివిధ పరిధులలో మరియు విభిన్న లక్షణాలతో వివిధ రకాల శక్తిని కలిగి ఉంటాయి. కాబట్టి, ఈ కారణంగా విద్యుత్ శక్తిని మార్పుడానికి అవసరమైన శక్తితో (కావలసిన లక్షణాలతో) కొన్ని విద్యుత్ ఎలక్ట్రానిక్ కన్వర్టర్లు లేదా పవర్ కన్వర్టర్లను ఉపయోగించడం ద్వారా మార్పుబడుతుంది.

ఎలక్ట్రిక్ మరియు ఎలక్ట్రానిక్ లోడ్లు విద్యుత్ శక్తి సరఫరా, AC విద్యుత్ సరఫరా, AC- నుండి- DC విద్యుత్ సరఫరా, అధిక-వోల్టేజ్ విద్యుత్ సరఫరా, పెరోగీరామబుల్ విద్యుత్ సరఫరా, నిరంతర విద్యుత్ సరఫరా మరియు స్విచ్ మోడ్ విద్యుత్ సరఫరా వంటి వివిధ రకాల విద్యుత్ సరఫరాలతో పనిచేస్తాయి.

WHAT IS SWITCH-MODE POWER SUPPLY?

The electronic power supply integrated with the switching regulator for converting the electrical power efficiently from one form to another form with desired characteristics is called as Switch-mode power supply. It is used to obtain regulated DC output voltage from unregulated AC or DC input voltage.

ఎలక్ట్రానిక్ విద్యుత్ సరఫరా ఒక రూపంలో కావలసిన రూపాలతో మరొక రూపం నుండి సమర్పించంగా విద్యుత్ శక్తిని మార్చడానికి స్విచ్ రెగ్యులేటర్ అనుసంధానించబడి ఉంది, స్విచ్-మోడ్ విద్యుత్ సరఫరా అంటారు. క్రమబద్ధికరించని AC లేదా DC ఇన్పుట్ వోల్టేజ్ నుండి నియంత్రిత DC అవుట్పుట్ వోల్టేజ్ పొందటానికి ఇది ఉపయోగించబడుతుంది.

Switch mode power supply

Similar to other power supplies, switch-mode power supply is a complicated circuit that supplies power from a source to loads, switch-mode power supply is essential for power consuming electrical and electronic appliances and even for building electrical and electronic projects.

ఇతర విద్యుత్ సరఫరా మాదిరిగానే, స్విచ్-మోడ్ విద్యుత్ సరఫరా అనేది ఒక సంక్లిష్ట సర్క్యూల్ట్, ఇది మాలం నుండి లోడ్ చేయడానికి శక్తిని ఇస్తుంది, స్విచ్-మోడ్ విద్యుత్ సరఫరా విద్యుత్ వినియోగం మరియు ఎలక్ట్రానిక్ ఉపకరణాల కోసం మరియు ఎలక్ట్రికల్ మరియు ఎలక్ట్రోనిక్ పరాజెక్ట్‌ను నిర్మించడానికి కూడా అవసరం.

Types of Switch Mode Power Supply

There are different types of SMPS, among those, a few are as follows

- DC to DC converter
- AC to DC converter
- Fly back converter
- Forward converter

SMPS వివిధ రకాల ఉన్నాయి, వాటిలో, కొన్సు కీరింది విధంగా ఉన్నాయి DC DC కన్వర్టర్ • AC నుండి DC కన్వర్టర్ • కన్వర్టర్ తీరిగి షై • ఫార్వర్ట్ కన్వర్టర్

SWITCH MODE POWER SUPPLY'S WORKING PRINCIPLE

The working of a few types of switch-mode power supply is as follows:

1. DC to DC Converter SMPS Working Principle: In a DC-to-DC converter, primarily a high-voltage DC power is directly obtained from a DC power source. Then, this high-voltage DC power is switched at a very high switching speed usually in the range

of 15 KHz to 50 KHz.

And then it is fed to a step-down transformer which is comparable to the weight and size characteristics of a transformer unit of 50Hz. The output of the step- down transformer is further fed into the rectifier. This filtered and rectified output DC power is used as a source for loads, and a sample of this output power is used as a feedback for controlling the output voltage. With this feedback voltage, the ON time of the oscillator is controlled, and a closed-loop regulator is formed.

కొన్ని రకాల స్వీచ్-మోడ్ విద్యుత్ సరఫరా పని ఈ కీరింది విధంగా ఉంది: DC DC కన్వెర్టర్ SMPS వర్కింగ్ ప్రినిపల్: DC-to-DC కన్వెర్టర్, ప్రధానంగా అధిక-వోల్టేజ్ DC పవర్ నేరుగా DC పవర్ మూలం నుండి పొందబడుతుంది. అప్పుడు, ఈ అధిక-వోల్టేజ్ DC శక్తి సాధారణంగా 15 KHz నుండి 50 KHz పరిధిలో చాలా అధిక మార్గిడి వేగంతో మారుతుంది. మరియు అది 50Hz ఒక టీరానాస్పర్కుర్ యూనిట్ ఒక దశల డోన్ టీరానాస్పర్కుర్ కు మృదువుగా ఉంది. షైఫ్-డోన్ టీరానాస్పర్కుర్ యొక్క అవటుపుట్టు మరింత ఉత్సేజితం చేస్తారు. ఈ ఫిల్టర్ మరియు సరిదిద్దిన అవటుపుట్టు DC శక్తిని లోడ్ కోసం ఒక మూలానికి ఉపయోగిస్తారు, మరియు అవటుపుట్టు వోల్టేజ్సు నియంత్రించడానికి ఒక అభివృద్ధాయాన్ని ఈ అవటుపుట్టు శక్తి యొక్క నమూనాగా ఉపయోగిస్తారు. ఈ అభివృద్ధాయ వోల్టేజ్స్, ఒసిలేటర్ యొక్క సమయం నియంత్రించబడుతుంది, మరియు ఒక సంవృత్త -షైఫ్ నియంత్రకం ఏర్పడుతుంది.

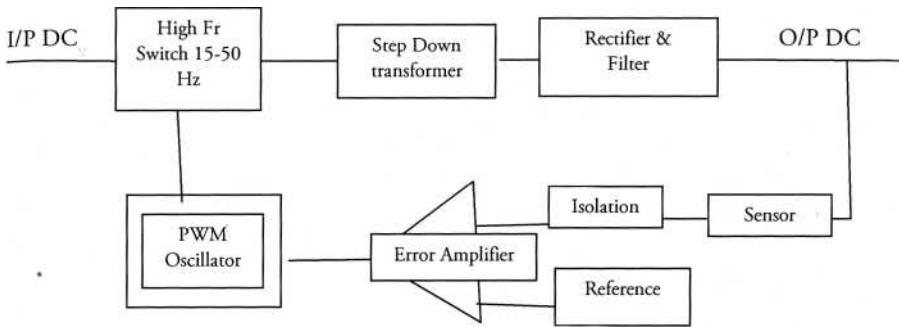


Figure 9.1:

DC to DC converter SNIPS

The output of the switching-power supply is regulated by using PWM (Pulse Width Modulation). As shown in the circuit above, the switch is driven by the PWM oscillator, such that the power fed to the step-down transformer is controlled indirectly, and hence, the output is controlled by the PWM, as till* pulse width signal and the output voltage are inversely proportional to each other

If the duty cycle is 50%, then the maximum amount of power is transferred through the step-down transformer, and if duty cycle decreases, then the amount of power transferred will decrease by decreasing the power dissipation.

DC నుండి DC కన్వర్టర్ స్నిప్స్

PWM (Pulse Width Modulation) ను ఉపయోగించి స్విచ్-విద్యుత్ సరఫరా యొక్క ఉత్పత్తి నియంత్రించబడుతుంది. ప్రైస్ సర్క్యూట్లో చూపిన విధంగా, స్విచ్ PWM ఒసిలేటర్ చేత నడుపబడుతోంది, అలాంటి దశ-డెన్స్ టీరానాన్సర్క్ లు కు పరోక్షంగా నియంత్రించబడుతుంది, అందువలన అవట్టుట్ ను PWM చే నియంత్రించబడుతుంది, * పల్స్ వెడల్పు సిగ్నల్ మరియు ఉత్సాధక వోల్టేజ్ ఒకదానికొకటి విలోమానుపాతంలో ఉంటాయి

విధి చక్రం 50% ఉంచే, అప్పుడు గరిష్ట పరిమాణ విద్యుత్తు షైఫ్-డెన్స్ టీరానాన్సర్క్, అయితే ద్వారా బదిలీ చేస్తే, విధి చక్రం తగ్గుతుంది, అప్పుడు బదిలీ చేయబడిన శక్తి పరిమాణం శక్తి తగ్గిపోతుంది.

2. AC to DC Converter SMPS Working Principle: The AC to DC converter SMPS has an AC input. It is converted into DC by rectification process using a rectifier and filter. This unregulated DC voltage is fed to the large-filter capacitor or PFC (Power Factor Correction) circuits for correction of power factor as it is affected. This is because around voltage peaks, the rectifier draws short current pulses having significantly high-frequency energy which affects the power factor to reduce.

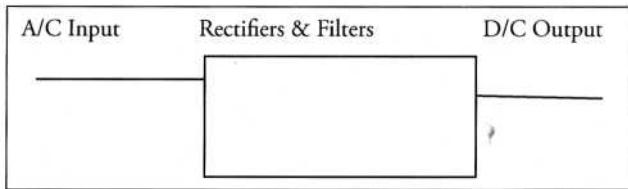
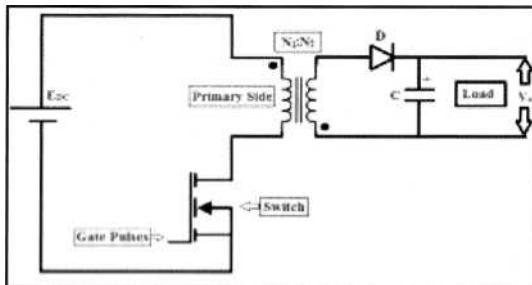


Figure 9.2: AC to DC converter SMPS

2. AC టు DC కన్వెర్టర్ SMPS వర్చింగ్ పర్సెప్ట్: AC టు DC కన్వెర్టర్ SMPS ఒక AC ఇన్పుట్ కలిగి ఉంటుంది. ఇది ఒక ఉత్తర్వు మరియు వడవోత్త ఉపయోగించి సరిదిఘడం ద్వారా DC గా మార్చబడుతుంది. ఈ నియంత్రించని DC వోల్టేజ్ అధిక-వడవోత్త కెపాసిటర్ లేదా PFC (పవర్ ఫ్యాక్టర్ కరెక్షన్) సరూచ్యాట్లకు శక్తినిచేచు శక్తిని సవరించడానికి సరూచ్యాట్లకు కలుగుతుంది. ఎందుకంటే వోల్టేజ్ శిఖరాల చుట్టూ, ఈ రెషిట్రోయర్ తక్కువ కరంట్ పల్చి అధిక-ఫర్కెన్సీ శక్తిని కలిగి ఉంటుంది, ఇది శక్తిని తగ్గించే శక్తిని ప్రభావితం చేస్తుంది.

The rest of the circuit will be same. The A/C is converted to DC and like the DC- DC Converter it is fed to the DC input.

It is almost similar to the above discussed DC to DC converter, but instead of direct DC power supply, here AC input is used. So, the combination of the rectifier and filter, shown in the block diagram is used for converting the AC into DC and switching is done by using a power MOSFET amplifier with which very high gain can be achieved. The MOSFET transistor has low on-resistance and can withstand high currents. The switching frequency is chosen such that it must be kept inaudible to normal human


beings (mostly above 20KHz) and switching action is controlled by a feedback utilizing the PWM oscillator.

This AC voltage is again fed to the output transformer shown in the figure to step down or step up the voltage levels. Then, the output of this transformer is rectified and smoothed by using the output rectifier and filter. A feedback circuit is used to control the output voltage by comparing it with the reference voltage.

మిగిలిన సర్క్యూట్ అదే ఉంటుంది. DC / DC కన్వర్టర్ లాంటి డిసెంబ్లెంట్ ఇన్పుట్లుకి A / C DC మార్పుబడుతుంది. DC పై DC కన్వర్టర్ పైన చెప్పినదానికి దాదాపుగా సమానంగా ఉంటుంది, కానీ నేరుగా DC విద్యుత్ సరఫరాకు బదులుగా AC AC ఇన్పుట్లు ఉపయోగిస్తారు. కాబట్టి, భూక్ రేభాచిత్రంలో చూపించిన రెక్షిష్టైయర్ మరియు వడపోత కలయిక AC కి DC లోకి మార్పుడానికి మరియు అధిక లాభం పొందగల శక్తితో ఉన్న MOSFET యంపైషైయర్లు ఉపయోగించి మార్పుబడుతుంది. MOSFET టీరాన్సిషన్సర్ తక్కువ నిరోధకత కలిగి ఉంది మరియు అధిక ప్రవాహాలను తట్టుకోగలదు. స్యోచ్ పోనఃపున్యం అనేది సాధారణ మానవులకు (ఎక్కువగా 20KHz పైన) వినబడకుండా ఉండాలని మరియు PWM ఒసిలేటర్లు ఉపయోగించుకునే ఒక అభివ్రాయం ద్వారా నియంత్రించే చర్యను నియంత్రించాలి.

ఈ ఎసి వోల్టేజ్ మళ్ళీ ఉత్పత్తిలో ఉన్న టీరాన్సిషన్సర్లు వోల్టేజ్ ప్లాయల్లో దశను లేదా దశను పెంచుతుంది. అప్పుడు, ఈ టీరాన్సిషన్సర్ యొక్క అవుట్యూట్ అవుట్యూట్ రెక్షిష్టైయర్ మరియు వడపోతని ఉపయోగించి సరిదిద్దబడి, చదును చేయబడుతుంది. అవుట్యూట్ వోల్టేజ్ రిపోర్ట్ వోల్టేజ్ పోల్చడం ద్వారా ఒక ఫీడ్‌ఫోర్క్ సర్క్యూట్ ఉపయోగించబడుతుంది.

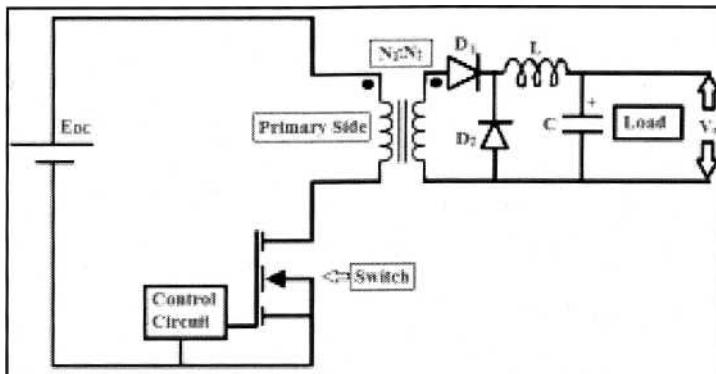
3. **Fly-back Converter type SMPS Working Principle:** The SMPS circuit with very low output power of less than 100W (watts) is usually of Fly-back converter type SMPS, and it is very simple and low- cost circuit compared to other S^JEPS circuits. Hence, it is frequently used for low-power applications.

Figure 9.3: Fly-back Converter type SMPS

షైబ్యాక్ కన్వర్టర్ లైప్ అండ్ ఎంపిస్ వర్షాంగ్ ప్రొఫెషనల్: 100W కంటే తక్కువ (తక్కువ వాల్యూ) కలిగిన SMPS సర్క్యూట్ షైబ్యాక్ కన్వర్టర్ లైప్ అండ్ ఎంపిస్, మరియు ఇది చాలా సాధారణ మరియు తక్కువ వ్యయం సర్క్యూట్ ఇతర సెట్ పోలిస్ట్ జెపిఎస్ సర్క్యూట్లు. అందువల్ల, ఇది తరచుగా తక్కువ-శక్తి అనువర్నాలకు ఉపయోగిసారు.

The unregulated input voltage with a constant magnitude is converted into a desired output voltage by fast switching using a MOSFET; the switching frequency is around 100 kHz. The isolation of voltage can be achieved by using a transformer. The switch operation can be controlled by using a PWM control while implementing a practical fly-back converter.

Fly-back transformer exhibits different characteristics compared to general transformer. The two windings of the fly-back transformer act as magnetically coupled inductors. The output of this transformer is passed through a diode and a capacitor for rectification and filtering. As shown in the figure, the voltage across this filter capacitor is taken as the output voltage of the SMPS.


షై-బ్యాక్ టీరానాపర్చర్ సాధారణ టీరానాపర్చర్ పోలిస్ట్ విభిన్న లక్షణాలను ప్రదర్శిస్తుంది. షై-బ్యాక్ టీరానాపర్చర్ యొక్క రెండు మూసివేతలు అయస్కాంత కండర ప్రేరేపకులు. ఈ టీరానాపర్చర్ యొక్క అవుట్యూట్ సరిదిద్దడానికి మరియు వడపోత కోసం ఉయోడ్ మరియు కెపాసిటర్ ద్వారా జారీ చేయబడింది. చిత్రంలో చూపిన విధంగా, ఈ వడపోత కెపాసిటర్ అంతటా వోల్టేజ్ SMPS యొక్క అవుట్యూట్ వోల్టేజ్ భీసుకోబడుతుంది.

4. Forward Converter type SMPS Working: Forward converter type SMPS is almost similar to the Fly-back converter type SMPS, but in the forward converter type, a control is connected for controlling the switch and at the output of the secondary winding of the transformer, and the rectification and filtering circuit is complicated as compared to the fly-back converter.

It can be called as a DC to DC buck converter, along with a transformer used for isolation and scaling. In addition to the diode DI and capacitor C, a diode D2 and an inductor L are connected at the output end. If switch S gets switched ON, then the input is given to the primary winding of the transformer, and hence, a scaled voltage is generated at the secondary winding of the transformer.

. ఫార్వర్డ్ కన్వర్టర్ శైప్ SMPS వర్చుంగ్: ఫార్వర్డ్ కన్వర్టర్ శైప్ SMPS షై-బ్యాక్ కన్వర్టర్ శైప్ SMPS కు సమానంగా ఉంటుంది, కానీ ఫార్వర్డ్ కన్వర్టర్ రకంలో, స్వీచ్ టీరానిన్నజర్ యొక్క ద్వితీయ మూసివేత యొక్క అవుట్యూట్ వద్ద నియంత్రణను అనుసంధానిస్తారు, మరియు ఎర్కువ్యాపన్ మరియు వడపోత సర్క్యూట్ షై-బ్యాక్ కన్వర్టర్ పోలిస్ట్ సంక్లిష్టంగా ఉంటుంది.

ఇది డిసి బీక్ కన్వర్టర్ యొక్క డిసిగా పిలువబడుతుంది, ఐసోలేషన్ మరియు స్క్రోలింగ్ కోసం ఉపయోగించే టీరానాపర్చర్ పాటు. ఉయోడ్ డి మరియు కెపాసిటర్ సి కాకుండా, ఉయోడ్ D2 మరియు ఒక ఇండక్షర్ ట అవుట్యూట్ ముగింపులో కనెక్ట్ అయ్యాయి. స్వీచ్ S స్వీచ్ ఆన్ చేయబడితే, అప్పుడు టీరానాపర్చర్ యొక్క పీరాథమిక మూసివేతకు ఇన్పుట్ ఇవ్వబడుతుంది, అందుకే స్క్రోల్ వోల్టేజ్ టీరానాపర్చర్ యొక్క ద్వితీయ స్క్రేణీలో ఉత్పత్తి అవుతుంది.

Figure 9.4: Forward Converter type SMPS

Thus, the diode D1 gets forward biased and scaled voltage is passed through the low-pass filter preceding the load. If the switch S is turned off, then the currents through the primary and secondary winding reach to zero, but the current through the inductive filter and load can not be changed abruptly, and its path is provided to this current by the freewheeling diode D2. By using the inductor, the required voltage across the diode D2 and to maintain the I_{MI} required for maintaining the continuity of the current at inductive filter.

Even though the current is diminishing against the output voltage, approximately the constant output voltage is maintained with the presence of the large capacitive filter. It is frequently used for switching applications with a power in the range of 100 W to 200 W.

Different types of topologies are there in which SMPS can be realized such as Buck converter, Boost converter, Self Oscillating fly-back converter, Buck-boost converter, Boost-buck, Cuk, Sepic. But only a few are discussed in this article, namely DC to DC converter, AC to DC converter, Fly-back converter and Forward converter. For more information regarding the types of switch-mode power supply and the types of SMPS with their working principles, feel free to write your comments for improving this article technically so that you can help the other readers to get awareness of SMPS.

అందువల్ల, డయోడ్ డి ముందుకు పక్కపాతంతో మరియు స్కూల్ వోల్టేజ్ లోడ్ ముందు కంటే తక్కువ-పాన్ ఫిల్టర్ గుండా వెళుతుంది. స్పీచ్ స ఆపివేయబడితే, అప్పుడు పేరాధమిక మరియు ద్వితీయ మూసివేత ద్వారా సున్నా ప్రవాహం సున్నాకి చేరుతుంది, కానీ ప్రేరక వద్దపోత మరియు లోడ్ ద్వారా టిన్ కరెంట్ అకస్మాతుగా మార్చబడు మరియు ఇది ఫరీవేహీలింగ్ డయోడ్ D2 ద్వారా ఈ ప్రవాహాన్ని అందిస్తుంది. లీటి ఇండక్టర్సు ఉపయోగించడం ద్వారా, డయోడ్ D2 అంతటా

ఆవసరమైన వోల్టేజ్ మరియు I, M1 ను కొనసాగింపు ఫిల్టర్ వద్ద కొనసాగింపు కొనసాగింపు కోసం నిర్వహించాలిన అవసరం ఉంది.

ఉత్పత్తి ఉత్పాదక వోల్టేజ్‌జు వ్యతిరేకంగా క్లీపిస్టున్నప్పటికీ, పెద్ద కెపాసిటీవ్ వదపోత యొక్క ఉనికిని కలిగి ఉన్న ప్రిరమైన ఉత్పత్తి వోల్టేజ్‌జు నిర్వహించబడుతుంది. ఇది తరచుగా 100 W నుండి 200 W. పరిధిలో శక్తితో అనువర్తనాలను మార్పించి చేయడానికి ఉపయోగించబడుతుంది.

బక్కు కన్వెర్టర్, బూష్టు కన్వెర్టర్, స్వీయ ఆసిలేటింగ్ షై-బ్యాక్ కన్వెర్టర్, బక్-బూష్టు కన్వెర్టర్, బూష్టు-బక్, Cuk, సెపికల్ వంటి SMPS ను గుర్తించే వివిధ రకాలైన టోపోలాజీలు ఉన్నాయి. కానీ కొన్ని మాత్రమే ఈ వ్యాసం లో చరించబడ్డాయి, DC నుండి DC కన్వెర్టర్, AC నుండి DC కన్వెర్టర్, షై-తిరిగి కన్వెర్టర్ మరియు ఫార్మ్యూల్ కన్వెర్టర్. స్వీచ్ మోడ్ విద్యుత్ సరఫరా రకాలు మరియు వారి పని సూత్రరాలతో SMPS రకాల గురించి మరింత సమాచారం కోసం, సాంకేతికంగా ఈ వ్యాసం మెరుగుపరచడానికి మీ వ్యాఖ్యానాలు రాయడానికి సంకోచించకండి, కాబట్టి మీరు ఇతర పారకులకు SMPS యొక్క అవగాహన పొందడానికి సహాయపడుతుంది.

Washing Machines

డాటికే యంత్రము

Washing M/c: different types of machines, washing techniques, parts of manual, semi automatic and fully automatic machines, basic working principle of manual, semi automatic and fully automatic machines, study the working of motors, different types of timers, power supply circuits

మేమీన్, సెమీ ఆటోమేటిక్ మరియు పూర్తిగా ఆటోమేటిక్ మిషన్ వీరాధమిక పని సూత్రం, మొటర్స్, వివిధ రకాల టైమర్లు, విద్యుత్ సరఫరా అధ్యయనం సర్క్యూట్లు

CLOTHES WASHING MACHINE

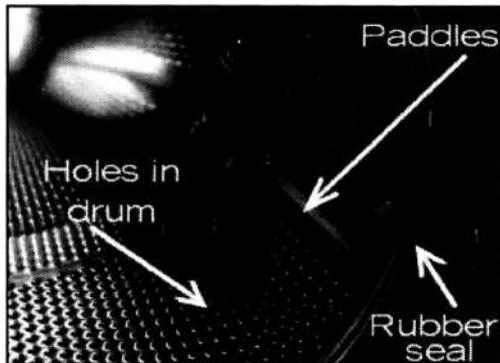

If there's one household appliance most of us simply could not do without, it's the clothes washer. If you've ever been without your machine for a few days or weeks, you'll know just how hard it is to wash clothes by hand. Although clothes washers look pretty straightforward, they pull off a really clever trick: with the help of detergents, they separate the dirt from your clothes and then rinse it away. But how exactly do they work?

Photo: A typical clothes washing machine, powered by electricity. This one is a front-loader: you put your clothes into that little circular window at the front. In the United States and Asia, top-loading machines are more common.

ఒక గృహ ఉపకరణం ఉంటే మాకు చాలా కేవలం లేకుండా చేయలేరు, ఇది దుస్తులను ఉత్తికే యంత్రం ఉంది. మీరు మీ కంప్యూటరు లేకుండా కొన్ని రోజులు లేదా వారాలు ఉంటే, చేతితో కడగడం ఎంత కష్టంగా ఉందో మీకు తెలుస్తుంది. దుస్తులను ఉత్తికే యంత్రాలు అందంగా సూటిగా కనిపించినప్పటికీ, వారు నిజంగా తెలివైన టీరిక్కి తీసివేస్తారు: డిటర్మెంటు సహాయంతో, వారు మీ బట్టల నుండి దుమ్ము వేరు చేసి, దాన్ని శుభ్రం చేయాలి. కానీ ఎలా పని చేస్తారు? ఫోటో: ఒక సాధారణ దుస్తులను వాపింగ్ మెషిన్, విద్యుత్ ద్వారా ఆధారితం. ఈ ఒక ముందు లోడర్ ఉంది: మీరు ముందు ఆ చిన్న వృత్తాకార విండో లోకి మీ బట్టలు చాలా. యునైటెడ్ స్టేట్స్ మరియు ఆసియాలో, అగ్ర-లోడ్ యంత్రాలు చాలా సాధారణంగా ఉంటాయి.

THE PARTS OF A CLOTHES WASHER

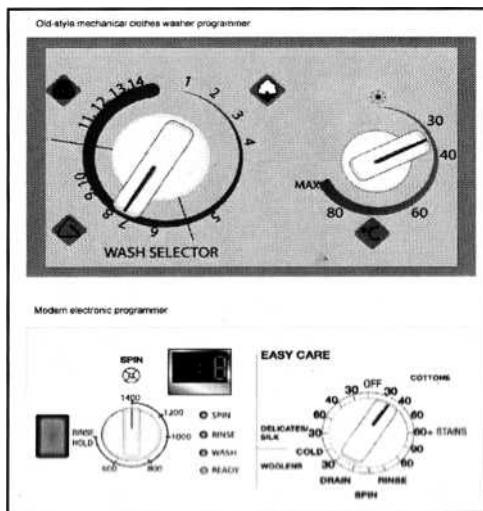
Photo: Inside a clothes washer drum. The paddles turn the clothes through the water. The holes let the water in (from above) and out (from below). The rubber seal stops water leaking out through the door.

The basic idea of a clothes washer is simple: it revolves the clothes about soaked in soap powder called detergent for a while and then spins fast to remove the water afterward. But there's a bit more to it than that. Think of a clothes washer and you probably think of a big drum that fills with water—but there are actually two drums, one inside the other.

The inner drum is the one you can see when you open the door or the lid. In a front-loading clothes washer, the drum stands upright. You push your clothes inside the door from the front and the whole drum rotates about a horizontal axis (like a car wheel). The drum has lots of small holes to let water in and out and paddles around the edge to slosh the clothes around. In a top loader, more common in the United States and Asia, you open a lip on top and drop your clothes into the drum from above. The drum is mounted about a vertical axis but doesn't actually move. Instead, there's a paddle in the middle of it called an agitator that turns the clothes around in the water. *

The two drums are the most important parts of a clothes washer, but there are lots of other interesting bits too. There's a thermostat (thermometer mechanism) to test the temperature of the incoming water and a heating element that warms it up to the required temperature. There's also an electrically operated pump that removes water from the drum when the wash is over. There's a mechanical or electronic control mechanism called a programmer, which makes the various parts of the clothes washer go through a series of steps to wash, rinse, and spin your clothes. There are two pipes that let clean hot and cold water into the machine and a third pipe that lets the dirty water out again. All these pipes have valves on them (like little doors across them that open and shut when necessary).

దుస్తులను ఉత్తికే యంత్రం యొక్క ప్రాథమిక ఆలోచన చాలా సులభం: కొంతకాలం డిటర్డంట్ అని పిలవబడే సబ్యు పొడిలో ముంచిన దుస్తులను తిరుగుతుంది మరియు ఆ తరువాత నీటిని తోలగించడానికి వేగంగా సిగ్న్ అవుతుంది. కానీ దాని కంచే కొంచెం ఎక్కువ ఉంది. బట్టలు ఉత్తికే యంత్రం గురించి ఆలోచించండి మరియు నీటితో నింపిన ఒక పెద్ద త్రమ్ గురించి ఆలోచించవచ్చు-కాని రెండు త్రమ్లు, ఇతర వాటిలో ఒకటి ఉన్నాయి.


లోపలి త్రమ్ మీరు తలుపులు లేదా మూత తెరిచినప్పుడు చూడవచ్చు. ముందరి లోడింగ్ దుస్తులను ఉత్తికే యంత్రంలో, త్రమ్ నిటారుగా ఉంటుంది. మీరు ముందు నుండి తలుపు లోపల మీ బట్టలు ప్ర్వ్ మరియు మొత్తం త్రమ్ ఒక సమాంతర అక్షం (ఒక కారు చుక్కం వంటి) గురించి తిరగడం. త్రమ్ము చిన్న రంధ్రాలు ఉన్నాయి, అంతేకాక నీటిని బయటకు మరియు అంచు చుట్టూ ఉన్న తెఱ్ఱతో చుట్టూ దుస్తులను కట్టడానికి. ఎగువ లోడర్లో, యునైటెడ్ స్టేట్స్ మరియు ఆసియాలో సర్వసాధారణంగా, మీరు పైభాగంలో ఒక పెదవిని తెరిచి పై నుంచి త్రమ్మాకి మీ దుస్తులను వదలండి. త్రమ్ ఒక నిలువు అక్షం గురించి మౌంట్ కానీ నిజానికి తరలించడం లేదు. దానికి బదులుగా, మధ్యలో ఒక తెఱ్ఱ ఉంది, ఇది ఆందోళనకారుడిగా పిలువబడుతుంది, అది నీటిలో బట్టలు చుట్టూ తిరుగుతుంది.

*

రెండు త్రమ్ము ఒక దుస్తులను ఉత్తికే యంత్రం యొక్క అతి ముఖ్యమైన భాగాలుగా చెప్పవచ్చు, కానీ ఇతర ఆసక్తికరమైన బిట్స్ చాలా ఉన్నాయి. ఇన్నమింగ్ వాటర్ యొక్క ఉష్టోగ్రత పరీక్షించడానికి మరియు అవసరమైన ఉష్టోగ్రతకు వేడి చేసే ఒక హీటింగ్ ఎలిమెంట్లు పరీక్షించడానికి ఒక థర్మషాట్ (థర్మమీటర్ మెకానిజం) ఉంది. వాయువు మగిసినప్పుడు త్రమ్ నుండి నీటిని తోలగిస్తుంది ఒక విద్యుత్తో పనిచేసే పంపు కూడా ఉంది. ఒక పేరోగ్రామర్ అని యంత్రిక లేదా ఎలక్ట్రానిక్ కంటోర్ మెకానిజం ఉంది, బట్టలు ఉత్తికే యంత్రం యొక్క వివిధ భాగాలను కడగడం, కడిగి శుభ్రం చేయడానికి మరియు మీ దుస్తులను సిగ్న్ చేయడానికి పరుసల పరుసలను చేస్తుంది. యంత్రంలోకి వేడి మరియు చల్లటి నీటితో శుభ్రం

చేసే రెండు గొట్టాలు ఉన్నాయి మరియు మళ్ళీ మురికినటిని బయటకు తీసే మూడువ పైవ్. ఈ గొట్టాలన్ను వాటిపై కవాటాలను కలిగి ఉంటాయి (వాటిలో కొంచెం తలుపులు తెరిచినప్పుడు థాయ్ తెరిచి, అవసరమైనప్పుడు మూసివేయబడతాయి).

THE WASHING MACHINE PROGRAM

Photo: Controlling a washing machine: An old-style mechanical clothes washer programmer. The dial on the left selects the program. The dial on the right sets the wash temperature (it's effectively a thermostat). Bottom: A modern electronic programmer. These dials are mounted on a computerized programmer circuit. The countdown-display tells you how long in hours and minutes it will be before your washing is clean and ready to take out (one hour and two minutes in this case, for a 30°C wash with a very fast 1400rpm spin).

All the important parts of the clothes washer are electrically controlled, including the inner drum, the valves, the pump, and the heating element. The programmer is like the conductor of an orchestra, switching these things on and off in a sensible sequence that goes something like this:

1. You put your clothes in the machine and detergent either in the machine itself or in a tray up above.
2. You set the program you want and switch on the power.
3. The programmer opens the water valves so hot and cold water enter the machine and fill

up the outer and inner drums. The water usually enters at the top and trickles down through the detergent tray, washing any soap there into the machine.

4. The programmer switches off the water valves.
5. The thermostat measures the temperature of the incoming water. If it's too cold, the programmer switches on the heating element. This works just like an electric kettle or water boiler.
6. When the water is hot enough, the programmer makes the inner drum rotate back and forth, sloshing the clothes through the soapy water.
7. The detergent pulls the dirt from your clothes and traps it in the water.
8. The programmer opens a valve so the water drains from both drums. Then it switches on the pump to help empty the water away.
9. The programmer opens the water valves again so clean water enters the drums.
10. The programmer makes the inner drum rotate back and forth so the clean water rinses the clothes. It empties both drums and repeats this process several times to get rid of all the soap.
11. When the clothes are rinsed, the programmer makes the inner drum rotate at really high speed—around 80 mph (130 km/h). The clothes are flung against the outside edge of the inner drum, but the water they contain is small enough to pass through the drum's tiny holes into the outer drum. Spinning gets your clothes dry using the same idea as a centrifuge.
12. The pump removes any remaining water from the outer drum and the wash cycle comes to an end.
13. You take your clothes out and marvel at how clean they are!
14. But there's still the problem of drying your wet clothes to figure out.

ఫోల్టో: ఒక వాషింగ్ మెస్టిన్స్ నియంత్రించడం: ఒక పొత్త-సైలి యాంత్రిక దుస్తులను ఉత్తికే పేరీగోరామర్. ఎడమషైప్ ఉన్న డయల్ పేరీగోరామ్స్ ఎంపిక చేస్తుంది. కుటిషైప్ ఉన్న డయల్ వాష్ ఉష్టోగ్రత్ సెట్ చేస్తుంది (ఇది సమర్థవంతంగా ఒక థర్మిషాట్). దిగువ: ఒక ఆధునిక ఎలక్ట్రానిక్ పేరీగోరామర్. ఈ డయల్ని కంప్యూటర్లైజ్ పేరీగోరామర్ సర్వాయ్ట్లో అమర్గబడి ఉంటాయి. కొంట్రోన్-డిస్ప్లై ఎంత గంటలు మరియు నిమిషాలలో మీ వాషింగ్ క్లీన్ మరియు తీసుకోవాలిన ముందు ఉంటుంది (ఈ సందర్భంలో ఒక గంట మరియు రెండు నిమిషాలు, చాలా వేగంగా 1400rpm స్పిన్ట్ 30 ° C వాష్ కోసం).

అంతర్థత త్రమ్, కవాటాలు, పర్ప మరియు తాపన మూలకంతో సహ దుస్సులను ఉత్తికే యంత్రం యొక్క అన్ని ముఖ్యమైన భాగాలు విద్యుత్ నియంత్రణలో ఉంటాయి. పేర్గీరామర్ ఒక ఆర్గాఫో యొక్క కండక్టర్ పతె ఉంటుంది, ఇలాంటి ఏదో ఒక వినూత్న క్రమంలో ఈ విషయాలను ఆన్ చేసి మరియు ఆఫ్ చెయ్యడానికి:

1. మీరు మీ దుస్సులను మేషీన్ మరియు డిటరైంట్ యంత్రంలో కూడా లేదా టైస్ ఉన్న టర్మేలో ఉంచండి.

2. మీకు కావలసిన పేర్గీరామ్సు మీరు సెట్ చేసి, శక్తిని మార్చండి.
3. పేర్గీరామర్ వాటర్ కవాళ్ళను తెరుస్తుంది, కాబట్టి వేడి మరియు చల్లటి నీరు యంత్రంలోకి ప్రవేశించి బాహ్య మరియు లోపలి త్రిప్పును నింపండి. నీటిని సాధారణంగా పైభాగంలోకి ప్రవేశిస్తుంది మరియు డిటరైంట్ టర్ ద్వారా తొన్ యంత్రంలోకి ప్రవేశిస్తుంది.
4. పేర్గీరామర్ వాటర్ వాల్వ్సు నుండి స్విచ్ ఆఫ్ అవుతాడు.
5. థర్మఫోట్ ఇన్కమింగ్ నీటి ఉఫోగ్రతను కొలుస్తుంది. ఇది చాలా చల్లగా ఉంచే, పేర్గీరామర్ స్విచ్ మూలకంపై స్విచ్ చేస్తాడు. ఇది విద్యుత్ కెటిల్ లేదా నీటి బాయిలర్ లాగా పనిచేస్తుంది.
6. నీటి తగినంత వేడి ఉన్నపుడు, పేర్గీరామర్ లోపలి త్రమ్ సబ్ము నీటి ద్వారా బట్టలు sloshing, ముందుకు వెనుకకు రోచేట్ చేస్తుంది.
7. డిటరైంట్ మీ బట్టలు నుండి మరికిని, నీటిలో ఉచ్చులు తీసివేస్తుంది.
8. పేర్గీరామర్ ఒక వాల్వ్ తెరుచుకుంటాడు కాబట్టి త్రమ్ రెండింటి నుండి నీటి కాలుతుంది. అప్పుడు నీటిని ఖాళీ చేయడానికి సహాయం చేయడానికి పంపు మీద అది మారుతుంది.
9. వాటర్ కవాళ్ళను పేర్గీరామర్ మళ్ళీ తెరుస్తుంది, తద్వారా కీన్ వాటర్ త్రమొన్లకి ప్రవేశిస్తుంది.
10. పేర్గీరామర్ అంతర్థత త్రమ్ పరిశుభ్రమైన నీరు తద్వారా ముందుకు వెనుకకు తిరుగుతుంది

బట్టలు శుభ్రపరుస్తుంది. ఇది ట్రమ్స్ రెండింటినీ ఖాళీ చేస్తుంది మరియు అన్ని సబ్మెన్సు వదిలించుకోవడానికి ఈ విధానాన్ని అనేక సార్లు పునరావృతమవుతుంది. fe , .

11. బట్టలు rinsed చేసినపుడు, వేరోగ్రామర్ అంతర్ధత ట్రమ్ 80 mph (130 km / h) వద్ద అధిక వేగంతో తిరుగుతుంది. లోపలి ట్రమ్ యొక్క వెలుపలి అంచుకు వ్యతిరేకంగా బట్టలు వేయబడతాయి, కానీ అవి కలిగి ఉన్న నీరు బహ్య త్రణాల ట్రమ్ యొక్క చిన్న రంధ్రాల గుండా వెళ్ళడానికి సరిపోతుంది. స్పిన్నింగ్ సెంట్రిఫ్యూజ్ అదే ఆలోచన ఉపయోగించి మీ బట్టలు పొడిగా గెట్టు.
12. పంపు బహ్య ట్రమ్ నుండి మిగిలిన నీటిని తెలిగిస్తుంది మరియు వాష్ చక్కం ముగింపుకు వస్తుంది.
13. నీ బట్టలను ఎత్తండి, నీవు ఎంత బాగున్నావు?
14. అయితే, మీ తడి బట్టలు ఎండబెట్టడం సమస్య ఇప్పటికీ దొరుకుతుంది.

Why do washing machines need so many programs?

Your machine doesn't know what you put into it and can't automatically tell how carefully to wash something like a delicate woollen jumper—because it doesn't know that's what it's got to do! The only things under its control are the amount and temperature of the water, the speed of the spin, the number of times the drum oscillates, the number of rinses, and so on. No-one wants to wash clothes in a scientific way: "I think I need 5.42 litres of water at exactly 42°C, I'll need to wash for exactly 34 minutes, and I'll need 200 spin revolutions when I'm done." That would give us literally an infinite number of possibilities, which is too much like hard work. Recognizing this, machine engineers try to make life easy by offering a few preset programs: each one uses a slightly different combination of these variables so it washes safely within the tolerance of different fabrics.

Why does that matter? All fabrics are different. A fabric like wool is immensely strong but has two big drawbacks (from the point of getting it clean): it's extremely hygroscopic (absorbs huge amounts of water) and loses its elasticity as the temperature increases. So if you're designing a washing machine to wash woollens, that's your starting point: don't allow the wool to become too hot (because the fibers will degrade and stretch too much) and don't agitate it excessively because it will stretch and not return to shape. With sturdier fabrics like denim, you can afford to bash them about in the drum much more—indeed, you must do so, because you need the agitation to get the detergent deep into the fibers and break up the dirt (and, of course, clothes made from denim are more likely to get dirtier than more

delicate fabrics such as cashmere jumpers, which people treat more carefully).

Each program you find marked on a clothes washing machine is a best guess by the engineers as to how much agitation a particular garment/fabric is likely to need and how much it can put up with without getting damaged. If you were handwashing in a sink, you'd make those judgements instinctively, balancing the need to get your garment clean with the need to protect it from damage. While your brain/hands would do that without thinking, the washing machine does it with a certain wash temperature, so many agitations, so many spins, and a certain spin speed.

ఎందుకు వాపింగ్ మిషన్లు చాలా కార్బ్యూక్రమాలు అవసరం లేదు? మీ యంత్రం మీరు ఏమి ఉంచాలో తెలియదు మరియు స్వయంచాలకంగా ఒక సున్నితమైన ఉన్ని జంపర్ వంటి వాటిని కడగడం ఎలా జాగ్రత్తగా చెప్పడం లేదు-ఎందుకంచే అది ఏమి చేయాలో తెలియదు! దాని నియంత్రణలో ఉన్న విషయాలు మాత్రమే నీరు మరియు ఉఫోగ్రత, స్పిన్ వేగం, సార్టు సంఖ్య త్రమ్ ఉగిసలాటలు, రిస్పుల సంఖ్య మరియు మొదలైనవి. ఎవరూ ఒక శాస్త్రియ మాధంలో బట్టలు కడగడం కోరుకుంటున్నారు: "నేను ఖచ్చితంగా 42°C వద్ద 5.42 లీటర్ల నీరు అవసరం ఆనుకుంటున్నాను, నేను సరిగ్గా 34 నిమిషాలు కడగడం అవసరం, నేను 200 స్పిన్ విఫ్ఫవాలు అవసరం పూర్తి చేసాడు. "ఇది అక్షరాలా అనంతమైన అనేక అవకాశాలను ఇస్తుంది, ఇది చాలా కష్టపడి పని చేస్తుంది. ఈ విధంగా గుర్తించి, మెపిన్ ఇంజనీర్లు కొన్ని ముందుగానే అమరించ కార్బ్యూక్రమాలను అందించడం ద్వారా జీవితాన్ని సులభతరం చేసేందుకు ప్రయత్నిస్తారు: ప్రతి వేర్వేరు బట్టలు సహనంతో సురక్షితంగా కడుగుతున్న ప్రతి ఒక్కటే ఈ వేరియబల్స్ రెముక్స్ కొంచెం విభిన్న కలయికను ఉపయోగిస్తుంది. ఆ విషయం ఎందుకు? అన్ని బట్టలు భిన్నంగా ఉంటాయి. ఉన్ని వంటి ఒక వర్షం చాలా బలంగా ఉంటుంది, కానీ రెండు పెద్ద లోపాలు (ఇది శుభ్రం చేసే సమయంలో): ఇది చాలా హైగ్రోస్యూపిక్ (నీటిని పెద్ద మొత్తాలను పీల్చుకుంటుంది) మరియు ఉఫోగ్రత పెరుగుతున్న దాని ప్రతిష్టాపకతను కోల్పుతుంది. కాబట్టి మీరు ఉపరగాయలను కడగడానికి ఒక

వామింగ్ మెష్సు రూపాందించినట్లయితే, అది మీ ప్రారంభ బిందువు: ఉన్న చాలా వేడిగా మారడానికి అనుమతించవద్దు (ఎందుకంచే ఫైబర్స్ చాలా అధీకరణం చెందుతుంది మరియు విస్తరించును) మరియు ఇది సాగతీతకు కారణం కాదు మరియు ఆకారం తీరిగి లేదు. డెనిమ్ వంటి ధృదమైన బట్టలు తో, మీరు డోలులో వాటిని గురించి గట్టిగా నష్టపరుచుకోవచ్చు- నిజానికి, మీరు అలా చేయాలి, ఎందుకంచే మీరు ఫైబర్లోని డిటర్టెంటును పొందడం మరియు ధూళిని విచ్చిన్నం చేయటం (మరియు, డెనిమ్ నుండి తయారైన దుస్తులు ఎక్కువ మంది సున్నితమైన కాపేమెర్ జంప్లర్ కంచే మురికివాటిని పొందటానికి ఎక్కువ అవకాశం ఉంది, ప్రజలు మరింత జాగ్రత్తగా వ్యవహరిస్తారు. ఒక దుస్తులను ఉత్తికే యంత్రం మీద గుర్తించిన ప్రతి కార్బ్యూక్రమం ఇంజనీర్లచే ఒక మంచి అంచనా, అది ఒక ప్రత్యేక వస్తుం / ఫాబర్ిక్ ఎంత ఆందోళన అవసరమవుతుందనేది ఎంత దెబ్బతింటుందో లేకుండా అనాల్ అవసరం. మీరు మునిగిపోతుంచే, ఆ తీర్చులు సహజంగానే చేస్తాయి, నష్టం నుండి రక్కించుకోవలసిన అవసరంతో మీ వస్తాన్ని శుభ్రపరాపుల్నిన అవసరం ఉంది. మీ మొదటు / చేతులు ఆలోచించకుండా అలా చేస్తే, వామింగ్ మెష్సును ఒక నిర్దిష్ట కడుపు ఉష్టోగ్రతతో, చాలా ఆందోళనలు, చాలా సిగ్నెస్ మరియు ఒక సిగ్నెస్ వేగంతో చేస్తుంది.

But do machines really need so many programs?

Look at the programmers in the photos above and you'll see something interesting: both machines seem to have an incredible number of programs. The mechanical programmer in the top photo offers 14 programs, seven temperatures, two spin speeds, and full or half load—and if you multiply those you'll get 392 possibilities! The electronic programmer underneath it offers 12 programs, 5 spin speeds, and various other options so, again, a good few hundred possibilities. Yet if you're like me, you probably wash almost all your clothes on a single program all the time. Even if you don't do that, it's unlikely you could think of 392 different types of clothing that need washing in 392 different ways.

కానీ యంత్రాలు నిజంగా చాలా కార్బ్యూక్రమాలు అవసరం?

పైన ఉన్న చిత్తరాలలో పేరీగీరామర్లు చూడండి మరియు మీరు ఆసక్తికరమైన ఏదో చూస్తారు: రెండు యంత్రాలు అద్భుతమైన సంఖ్యలో కార్బ్రూక్రమాలను కలిగి ఉంటాయి. టాప్ ఫోటోలో యంత్రిక పేరీగీరామర్ 14 పేరీగీరామర్, ఏదు ఉష్ణోగ్రతలు, రెండు సింగ్ వేగాలు, మరియు పూర్తి లేదా సగం లోడును అందిస్తుంది మరియు మీరు వాటిని గుణించితే మీరు 392 అవకాశాలను పొందుతారు! ఇది కింద ఎలక్ట్రానిక్ పేరీగీరామర్ 12 కార్బ్రూక్రమాలు అందిస్తుంది, 5 సింగ్ వేగం, మరియు వివిధ ఇతర ఎంపికలు కాబట్టి, మళ్ళీ, ఒక మంచి కొన్ని పందల అవకాశాలను. అయినా మీరు నా లాంటివే అయి ఉంచే, మీరు అన్ని కార్బ్రూలయాలన్నింటినీ దాదాపు అన్నింటినీ కడగాలి. కూడా II మీరు అలా లేదు, మీరు 392 వివిధ మాధ్యాల్లో వాపింగ్ అవసరం 392 వివిధ రకాల 01 దుస్తులను అనుకుంటున్నాను కాలేదు అవకాశం ఉంది.

Much of this is a marketing con to make you believe the machine has more features than it really does. Most machines can really do only about three or four basic washes: 1) a high-temperature, long-duration wash for white laundry that uses a fairly high spin speed and lots of water; 2) a slightly faster, lower-temperature wash for colored cottons that uses similar spin speed and water volume; 3) a synthetics wash that uses the same amount of water, agitates the laundry less, spins more slowly, and uses lower temperatures; and 4) a woollens wash that probably uses quite a bit more water, but agitates the drum less, and spins the water out relatively slowly. Any other programs are variations of these four.

పీటిలో ఎక్కువ భాగం యంత్రాలంగం, నిజంగా యంత్రం కంచే ఎక్కువ లక్ష్యాలను కలిగి ఉన్నట్లు మీరు భావిస్తారని. చాలా యంత్రాలు కేవలం మూడు లేదా నాలుగు పీరాధమిక వాషెషికను మాత్రమే చేయగలవు: 1) అధిక-స్పీడ్ వేగం మరియు నీటిని ఎక్కువగా ఉపయోగించే తెల్ల బట్టల కోసం అధిక-ఉష్ణోగ్రత, సుదీర్ఘకాలం వావ్; 2) తక్కువ సింగ్ వేగం మరియు వాల్యూమ్ వాల్యూమ్ను ఉపయోగించే రంగు కాటన్నకు తక్కువ-ఉష్ణోగ్రత ఉష్ణోగ్రత కడగడం; 3) అదే మొత్తం నీటిని ఉపయోగించే కృతీరిమ వావ్, తక్కువ లాండ్రీని పీరేరేపిస్తుంది, నెమ్ముదిగా సింగ్ చేస్తుంది మరియు తక్కువ ఉష్ణోగ్రతలు ఉపయోగిస్తుంది; మరియు 4) ఒక కొంచెం ఎక్కువ నీటిని వాడే ఒక ఉన్ని దుస్తులను ఉంచుతారు, కానీ ట్రైమ్ తక్కువగా

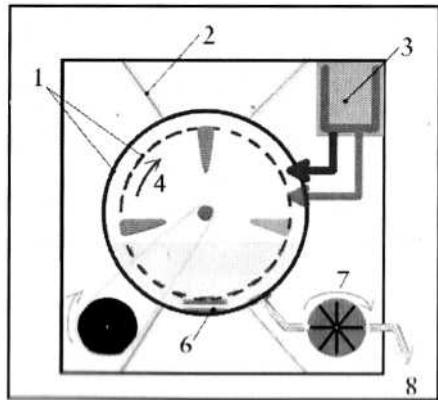
ఉండి, నీటిని సాపేక్షంగా నెమ్మదిగా తిప్పుతుంది. ఏదైనా ఇతర కార్బూక్షమాలు ఈ నాలుగు వైవిధ్యాలు.

What's the difference between a front-loader and a top-loader?

The washing process is slightly different in front- and top-loading machines, so let's now look at each of these in a bit more detail:

In a front-loading clothes washer...

1. There's a fixed outer drum (blue) and a rotating inner drum (red) with small holes around its edge. The drums are mounted on a horizontal axis.
2. The inner drum is held to the frame of the machine by heavy-duty springs. That's because, when the clothes spin, they can make the drum shake violently; the springs help to absorb the vibrations.
3. Hot and cold water enter through the detergent tray at the top.
4. The inner drum turns back and forth. The plastic paddles on the inside (shown here by gray triangles) help to slosh the clothes through the detergent and water held by the outer drum.
5. An electric motor turns the inner drum, typically using a long rubber belt (yellow).
6. A heating element heats the water as necessary.
7. When the wash cycle is finished, the pump sucks the water away.
8. The water empties down a tube to the drain.


పాషింగ్ ప్రెక్సియ ముందు మరియు పైన లోడ్ యంతీరాలు కొండిగా భిన్నంగా ఉంటుంది, కాబట్టి ఇప్పుడు ఒక బిట్ మరింత వివరాలు ఈ ప్రతి చూద్దాం: ఒక ముందు లోడింగ్ దుస్థులను ఉత్తికే యంత్రం లో ...

1. ఒక ప్రింగ్ బాహ్య డ్రెమ్ (సీలం) మరియు భ్రమణ అంతర్భంత డ్రెమ్ (ఎరువు) దాని అంచు చుట్టూ ఉన్న చిన్న రంధీరాలతో ఉంది. డ్రెమ్స్ ఒక క్లితిజ సమాంతర అక్షం మీద హొంట్ చేయబడతాయి.
2. లోపలి డ్రెమ్ భారీ డ్యూటీ స్ప్రింగ్ ద్వారా యంత్రం యొక్క ఫోర్స్ ముఖ్యం ఉంచబడుతుంది. ఎందుచేతనంచే, బట్టలు స్ప్రిన్ చేసినప్పుడు, వారు డ్రెమ్సు హింసాత్మకంగా వణుకు చేయవచ్చు; స్ప్రింగ్స్ స్పందనలను గ్రహించడానికి సహాయం చేస్తుంది.

3. వేడి మరియు చల్లని నీరు ఎగువన డిటరైంట్ టర్చే ద్వారా ప్రవేశించండి.
4. లోపలి డ్రమ్ ముందుకు వెనుకకు మారుతుంది. లోపలి భాగంలో ఉన్న ఫ్లాష్‌మీక్ తెఱ్పులు (ఇక్కడ బూడిద రంగు తీరిభుజాలతో చూపించబడ్డాయి) బాహ్య డ్రమ్ చేత నిర్వహించబడుతున్న డిటరైంట్ మరియు నీటి ద్వారా బట్టలు చీల్చుకోవడానికి సహాయపడతాయి.
5. ఎలక్ట్రిక్ మోటారు లోపలి డ్రమ్ము మారుస్తుంది, సాధారణంగా సుదీర్ఘ రబ్బరు బెల్లును ఉపయోగిస్తుంది (పసుపు).
6. హీటింగ్ ఎలిమెంట్ ను నీటిని వేడిచేస్తుంది. వాష్ చక్రం ఫూర్చులునప్పుడు, పంచ్ నీటిని పీల్చుకుంటుంది.
8. నీటి ప్రవాహాన్ని ఒక గొట్టం డోన్ భాళీ చేస్తుంది.

Diagram 10.1: Front loader Washing

In a Top loader Washing Machine

1. Lift the lid on top and drop your clothes in from above. We're looking here from one side.
2. Just like in a front-loading machine, there's an outer drum (blue) and an inner drum with holes in it (red), but they're mounted about a vertical axis.
3. Hot and cold water enter through pipes near the top, passing through the detergent tray and flushing the detergent into the machine.

- During the wash cycle, a large plastic agitator (green) turns around, moving your clothes through the water. Both drums remain stationary.
- The agitator is powered by an electric motor using a rubber belt.
- During the spin cycle, the same electric motor turns the inner drum (red) at high speed, throwing water through its holes into the outer drum.
- When the wash is finished, the pump drains the water from the outer drum.

ఒక టాప్ లోడర్ వాషింగ్ మెషిన్ లో

పైభాగంలో మూత ఎత్తండి మరియు పైన నుండి మీ బట్టలు వేయండి. మేము ఒక వైపు నుండి ఇక్కడ చూస్తున్నాము.

2. ఒక ప్రంట-లోడ్ మెషిన్ లోడ్, బయటి ట్రమ్ (నీలం) మరియు లోపలి ట్రమ్ దానిలో రంధ్రాలు (ఎరువు) ఉన్నాయి, కానీ అవి ఒక నిలువు అక్షం గురించి మౌంట్ చేయబడతాయి.

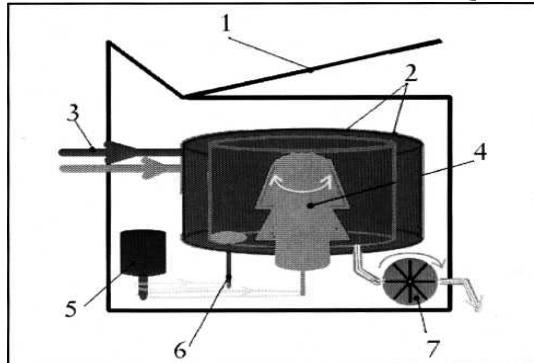
3. వేడి మరియు చల్లని నీరు పైభాగానికి పైపుల ద్వారా ప్రవేశిస్తారు, డిటర్చెంట్ టర్ గుండా వెళుతుంది మరియు యంత్రంలోకి డిటర్చెంటును కదిలించడం.

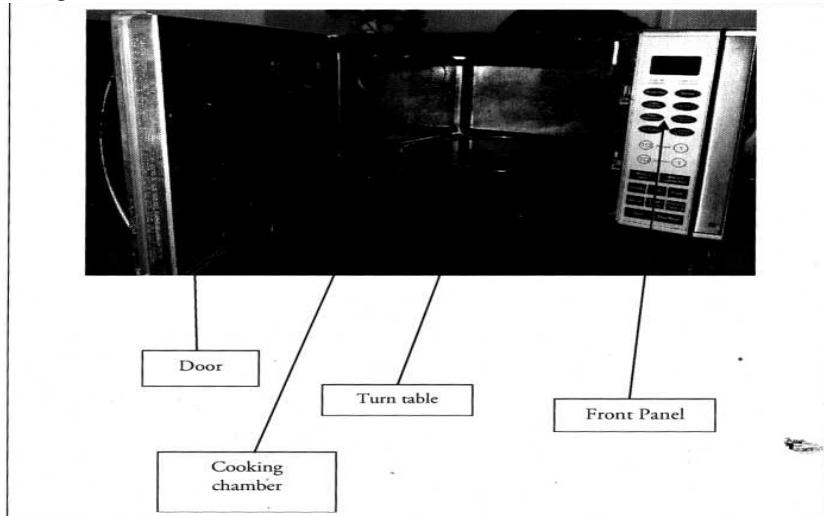
4. వాష్ సైకిల్ సమయంలో, ఒక పెద్ద షాఫ్ట్ ఆండ్రోఫ్ (ఆకుపచ్చ) నీటితో మీ దుస్తులను కదిలించి తెరుగుతుంది. రెండు ట్రమ్సు షిరంగా ఉంటాయి.

5. ఆండ్రోఫ్ నకారుడు ఒక రబ్బరు బెల్లును ఉపయోగించి విద్యుత్ మోటారు చేత శక్తినిచ్చేవాడు.

6. స్పిన్ సైకిల్ సమయంలో, అదే విద్యుత్ యంత్రం అంతర్భత ట్రమ్ (ఎరువు) అధిక వేగంతో, దాని రంధ్రాల ద్వారా నీటిని బాహ్య డ్రిష్ట్ కి విసిరేస్తుంది.

7. వాష్ పూర్తయినప్పుడు, పంపు బాహ్య ట్రమ్ నుండి నీరు ప్రవహిస్తుంది.




Figure 10.2: Top loader Washing Machine

Microwave Oven

మైక్రోవేవ్ ఒవన్

Microwave oven: Different types of oven, study the various functions of Oven, Electrical wiring diagram of microwave oven, working of Power supply.

మైక్రోవేవ్ ఒవన్: పొయి యొక్క వివిధ రకాలు, ఒవన్ యొక్క వివిధ విధులు, మైక్రోవేవ్ ఒవన్ యొక్క ఎలక్ట్రికల్ వైరింగ్ రేఫ్లాచిత్రం, విద్యుత్ సరఫరా యొక్క పనిని అధ్యయనం.

Figure 11.1: Parts of A microwave oven from the front

A Microwave Oven has an opening in the front fitted with a door. The microwave Oven can not be turned on with the door open. The door is fitted with a microswitch that will shut the Microwave automatically when the door is kept open and the unit is in switched on condition. The inside where the food is heated is made of steel as microwaves can't pass through steel,

Located beside the door there is a **control panel** and a **display section**. The control panel houses a **circuit board** which controls the operations and the functions of the Microwave Oven.

Magnetron is the device which generates Microwaves and is the heart of the Microwave Ovens.

There is a Cooling **fan inside which** pulls air through vents in the side and across the electronics board when the oven is on. The air is blown out of the fan and through the cooling fins of the magnetron.

A turn table rotates automatically with the help of a motor and rotates clockwise and

anti-clock wise when cooking food. The food is cooked uniformly from all sides because of this rotation of the turn table

In Grill and Convection Microwave Ovens, **metal racks or trays** are provided to place the food items closer to the grill placed at the top. This results in uniform roasting of the food even at the top.

Types of Microwave Ovens:

Generally the microwave ovens are available in three categories, solo, grill & convection.

1. ***Solo Microwave Ovens:*** The solo models are basic models in micro wave ovens. These ovens only have Magnetrons to produce Microwaves and thus can perform the heating and boiling. However it can't perform roasting or grilling and baking operations.
2. ***Grill Microwave Ovens:*** The grill models have heating coils which enables grilling or roasting functions. It can be used with the Microwave ON as well as OFF position. For example we can use both these functions simultaneously while cooking chicken legs, fish or paneer dishes.
3. ***Convection Microwave Ovens:*** In the case of convection models the micro wave oven has a blower to bake the food. The heaters are connected to a thermostat to control the cavity temperature, the range of the thermostat is 95° c to 230° e. This is a very versatile function and very convenient for making cake, biscuits, naan-katai or even tandoori dishes. This can use all the functions in combination or independently.

మైకోవేవ్ ఒవన్ ఒక తలుపును అమర్చిన ముందు భాగంలో పొరంభమవుతుంది. తలుపు తెరిచినప్పుడు మైకోవేవ్ ఒవన్ను ఆన్ చేయడం సాధ్యం కాదు. తలుపు ఒపెన్ ఉంచినప్పుడు మరియు యూనిట్ పరిస్థితి స్విచ్ ఆన్ ఉన్నప్పుడు స్వయంచాలకంగా మైకోవేవ్ మూసివేసే ఒక microswitch అమర్చిన ఉంది. మైకోవేవ్ స్టీల్ గుండా వెళ్ళలేనందున శబ్దం వేడిచేసిన లోపల ఉక్కతో తయారు చేయబడుతుంది,

తలుపు పక్కన ఉన్న ఒక నియంత్రణ ప్యానెల్ మరియు ప్రదర్శన విభాగం ఉంది. నియంత్రణ ప్యానెల్ సర్క్యూట్ బోర్డు ఉంది, ఇది మైకోవేవ్ ఒవన్ యొక్క కార్బకలాపాలను మరియు కార్బకలాపాలను నియంత్రిస్తుంది.

మాగ్నెట్రాన్ మైకోవేవ్ ను ఉత్పత్తి చేసే పరికరం మరియు మైకోవేవ్ ఒవన్ యొక్క గుండె.

ఒవన్ ఆఫ్ ఉన్నప్పుడు వైపు మరియు ఎలెక్ట్రానిక్స్ బోర్డ్ గుండా గుంటలు ద్వారా గాలిని లాగుతున్న ఒక చల్లటి అభిమాని ఉంది. గాలి అభిమాని నుండి మరియు మాగ్నెట్రాన్ యొక్క శితలీకరణ రెక్కల ద్వారా ఎగిరిపోతుంది.

ఒక టర్ను చేయుల్ స్వయంచాలకంగా ఒక మోటారు సహాయంతో తిరుగుతుంది మరియు ఆహారాన్ని వంట చేసేటప్పుడు సవ్యదిశలో మరియు యంటే క్లోక్ వార్గా తిరుగుతుంది. చెర్ను చేయుల్ యొక్క ఈ భ్రమణ కారణంగా ఆహారం అన్ని వైపుల నుండి ఏకరీతిలో వండుతారు

గీరిల్ మరియు Convection లో మైక్రోవేవ్ ఒవెన్సు, మెటల్ రాక్సు లేదా టర్మేలు ఎగువన ఉంచుతారు గీరిల్ దగ్గరగా ఆహార వస్తువులు ఉంచడానికి అందిస్తారు. ఇది ఎగువ భాగంలో ఆహారంలో ఏకరీతి వేయించుట ఫలితంగా ఉంటుంది.

మైక్రోవేవ్ ఒవెన్సు రకాలు:

సాధారణంగా మైక్రోవేవ్ ఒవెన్సు మూడు విభాగాలు, సోలో, గీరిల్ & ఉష్టప్రసరణలో అందుబాటులో ఉంటాయి.

1. సోలో మైక్రోవేవ్ ఒవెన్సు: మైక్రో వేవ్ ఒవెన్సు సోలో నమూనాలు ప్రాథమిక నమూనాలు. ఈ ఒవెన్సు మాగ్నెటరాస్టు మాత్రమే మైక్రోవేవ్సు ఉత్పత్తి చేస్తాయి, తద్వారా తాపన మరియు మరిగేలా చేయవచ్చు. అయితే అది వేయించడం లేదా గీరిల్లింగ్ మరియు బేకింగ్ కార్బూకలాపాలను నిర్వహించలేదు.

2. గీరిల్ మైక్రోవేవ్ ఒవెన్సు: గీరిల్ మోడల్స్ తాపన పాత్రలు కలిగి ఉంటాయి, ఇవి గీరిలేటింగ్ లేదా వేయించడం పనులను చేస్తాయి. ఇది మైక్రోవేవ్ ఆఫ్ అలాగ్ OFF ఫోనాలతో ఉపయోగించవచ్చు. ఉదాహరణకు కోడి కాళ్ళ, చేపలు లేదా పనీర్ వంటలలో వంట చేసేటప్పుడు ఒకేసారి ఈ రెండు పనులను ఉపయోగించవచ్చు.

3. ప్రసరణ మైక్రోవేవ్ ఒవెన్సు: ఉష్టప్రసరణ నమూనాల సందర్భంలో సూక్ష్మ వేవ్ ఒవెన్సు ఆహారాన్ని కాల్పుడానికి ఒక భోవర్సు కలిగి ఉంటుంది. హీటర్లు ప్రోడైరోమీకి కలుపిత ఉష్టాగ్రతని నియంత్రించటానికి అనుసంధానించబడి ఉంటాయి, థర్మపోట్ యొక్క పరిధి $95^{\circ}C$ నుండి $230^{\circ}e$ వరకు ఉంటుంది. ఇది కేక్, బిస్కిట్లు, నాన్-కటాయి లేదా తందూరి వంటలలో కూడా చాలా బహుమఖి ప్రయోగం మరియు చాలా సొకర్యవంతంగా ఉంటుంది. ఇది కలయిక లేదా స్వతంత్రంగా అన్ని విధులు ఉపయోగించవచ్చు.

How the Microwave Oven Functions

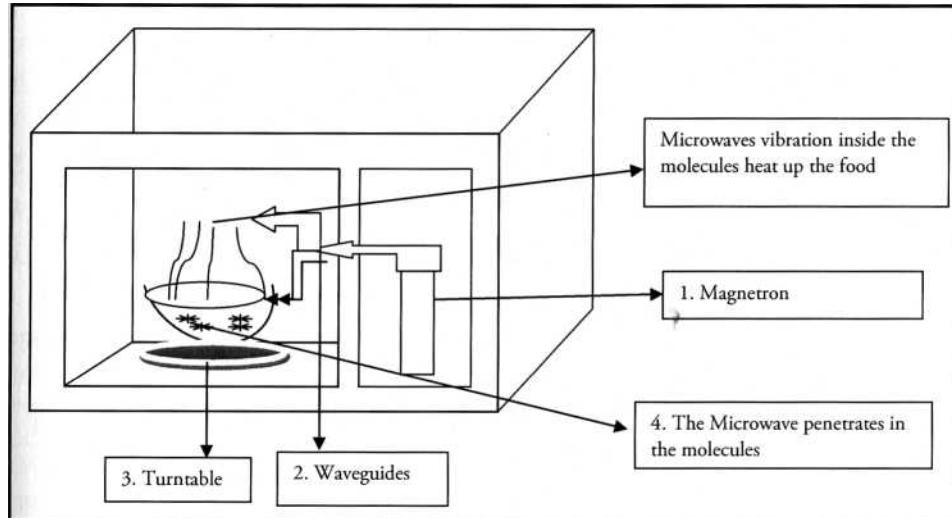
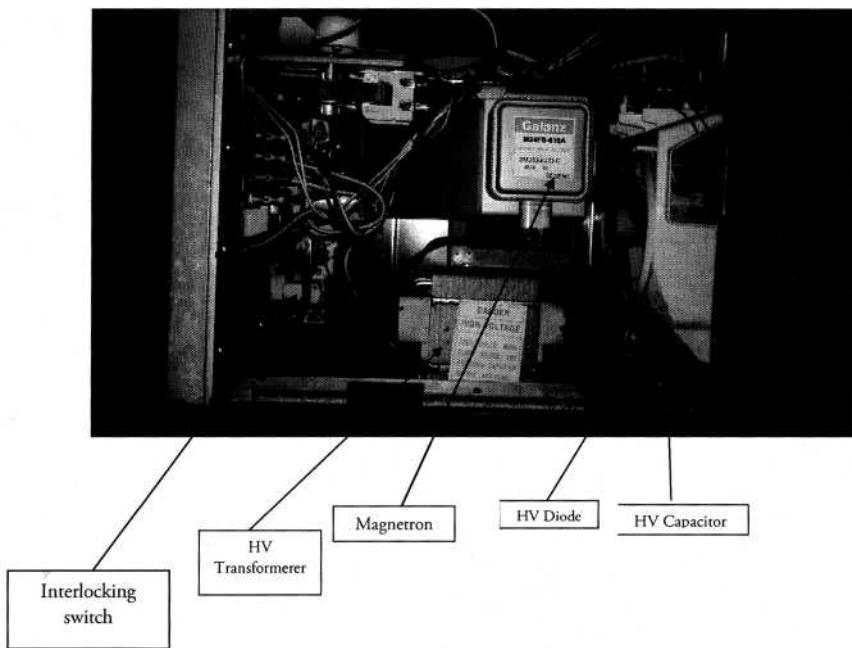


Figure 11.2: Microwave Functional Diagram

1. Microwave Generator also called the Magnetron is the heart of the Microwave oven. The frequency of Microwave generated is 2.54 GHz or $2.54 \times 10^9 \text{ Hz}$ i.e the molecules of the microwave vibrate 2.54×10^9 times in one second. The wavelength of this vibration is calculated by the WAVE EQUATION:
$$\text{Velocity} = \text{Wavelength} \times \text{Frequency}$$
 OR
$$\text{Wavelength} = \text{Velocity} / \text{Frequency}$$

Velocity of light = $3 \times 10^{10} \text{ cm per sec}$; Frequency = $2.54 \times 10^9 \text{ per sec}$.
Thus the wavelength of Microwave is = $(3 \times 10^{10} \text{ cm/sec}) / (2.54 \times 10^9 \text{ /sec}) = 12 \text{ cm}$.
2. The magnetron forces these microwaves into the food compartment through a channel called a wave guide.
3. The food bowel lies on a turntable, spinning slowly round so the microwaves cooking takes place evenly. ,
4. The microwaves gets reflected from the metallic wall of the cavity and bounces back and forth. As they reach the food particles the waves penetrate the food particles and they make the molecules of the food particle to vibrate briskly as the frequency is very high.
5. Vibrating molecules have heat so, the faster the molecules vibrate, the hotter the food becomes. Thus the microwaves pass their energy onto the molecules in the food, rapidly heating it up.


1. మైక్రోవేవ్ జనరేటర్ కూడా మాగ్నిటర్స్ అని పిలుస్తారు మైక్రోవేవ్ ఒవెన్ యొక్క గుండె. మైక్రోవేవ్ యొక్క పొనఃపున్యం 2.54 GHz లేదా $2.54 \times 10^9 \text{ Hz}$ అనగా మైక్రోవేవ్ యొక్క అణువులు ఒక సెకనులో 2.54×10^9 సార్లు ప్రకటిస్తాయి. ఈ కదలిక యొక్క తరంగదైర్ఘ్యం WAVE EQUATION చేత లెక్కించబడుతుంది: $\text{వేగం} = \text{తరంగదైర్ఘ్యం} \times \text{ఫోర్మేషన్}$ లేదా $\text{తరంగదైర్ఘ్యం} = \text{వెలాసిటీ} / \text{ఫోర్మేషన్}$ క్లోజ్ వెడల్పు = 3×10^{10} సెం. ఫోర్మేషన్ = 2.54×10^9 సెకనుకు. అందువలన మైక్రోవేవ్ యొక్క తరంగదైర్ఘ్యం = $(3 \times 10^{10} \text{ cm} / \text{sec}) / (2.54 \times 10^9 / \text{sec}) = 12 \text{ సెం.మీ.}$

2. మాగ్నిటర్స్ రూ మైక్రోవేవ్ ను వేవ్ గైడ్ అని పిలిచే ఒక ఛానెల్ ద్వారా ఫుడ్ కంపార్ట్మెంట్లోకి ప్రవేశిస్తుంది. ఆహార గిన్నె ఒక భ్రమణ తలం మీద ఉంది, నెమ్ముదిగా రొండ్లో తీరుగుతూ ఉంటుంది, కాబట్టి మైక్రోవేవ్ వంట సమానంగా జరుగుతుంది. ,

4. మైక్రోవేవ్ కుహారం యొక్క లోహ గోడ నుండి ప్రతిబింబిస్తుంది మరియు ముందుకు వెనుకకు బోన్స్ అవుతుంది. వారు ఆహార కణాలను చేరుకున్నప్పుడు తరంగాలు ఆహార కణాలను చొచ్చుకొనిపోతాయి మరియు ఫోర్మేషన్ చాలా ఎక్కువగా ఉండటం వలన ఆహార కణంలోని అణువులను చురుకైనవిగా కదల్చుడం.

5. కంపించే అణువులు వేడిని కలిగి ఉంటాయి, వేగంగా అణువుల ప్రకంపనము, వేడిని ఆహారము అవుతుంది. అందుచే మైక్రోవేవ్ ఆహారంలో అణువులపై వారి శక్తిని, వేగంగా నయం చేస్తుంది.

Microwave important components identification after opening

Figure 11.3: Important Components of Microwave Oven

The Microwave Front Panel Controls:

The figure below identifies the Front Panel controls of Microwave. The important controls are as below:

1. **Start:** This button will start the Microwave.
2. **Stop/reset:** This button will stop the cooking.
3. **Various Modes:** Like Convection, Grill, Defrost.
4. Timer control.
5. Various timing settings.

మైక్రోవేవ్ ఫ్రంట్ ప్యానెల్ నియంత్రణలు:

కెరింద ఫిగర్ మైక్రోవేవ్ యొక్క ఫ్రంట్ ప్యానెల్ నియంత్రణలను గుర్తిస్తుంది.

దిగుమతి నియంత్రణలు కెరింద ఉన్నాయి:

1. వీరారంభం: ఈ బటన్ మైక్రోవేవ్ వీరారంభమవుతుంది.
2. అప్ / రీసెట్ చేయండి: ఈ బటన్ వంటని నిలిపివేస్తుంది.

3. వివిధ మొడ్సు: కన్వేక్షన్, గీరీల్, డిఫ్యూషన్ వంటివి. షైమర్ నియంత్రణ .
5. వివిధ షైమింగ్ సెట్టింగులు.

Troubleshooting Guide

Practical exercises- You can do the following important practical with this troubleshooting Guide:

1. Rectify the faults leading to Fuse Blow off when cooking is initiated. Check whether there is a short in the HV Capacitor.
2. Rectify the fault leading to non response of touch switches (front panel).
3. Rectify the fault leading to dead set.
4. Rectify the fault leading to long cook time.

Important Safety Information: Microwave ovens are among the most dangerous appliance to work on. It has High Voltages and can be fatal to work without safety gears. Adequate precautions are required while troubleshooting and repairing.

ప్రాణికర్త వ్యాయామాలు- మీరు ఈ ప్రటిబుల్లూటింగ్ గైడ్ తో కెరింది ముఖ్యమైన ఆచరణాత్మక చేయగలరు: వంట ప్రారంభించినప్పుడు పూజ్యజ్ఞ భూయింగుకు దారితీసే లోపాలను సరిదిధిండి. HV కెపాసిటీ చిన్నదైనా ఉన్నాయో లేదో తనిభీ చేయండి. 2. టచ్ స్విచ్సు (ముందు ప్యానెల్) యొక్క ప్రతిస్పందనకు దారితీసే తప్పుని సరిచేయండి. 3. చనిపోయిన సెట్ దారితీసింది తప్పు సరిచేయి. 4. దీర్ఘ కుక్క సమయం దారితీసింది తప్పు సరిచేయి. ముఖ్యమైన

భద్రతా సమాచారం: పనిచేయడానికి అత్యంత ప్రమాదకరమైన ఉపకరణాలలో మైక్రోవేవ్ ఒవన్లు ఉన్నాయి. ఇది అధిక వోల్టేజ్సను కలిగి ఉంటుంది మరియు భద్రతా గేర్రు లేకుండా పనిచేయడానికి వీరాణాంతకం కావచ్చు. ట్రూబుల్ మాటింగ్ మరియు రిపేరీంగ్ అయితే తగినంత జాగ్రత్తలు అవసరం.

Problem-General	Specific Symptoms	Action to be taken
Heating or cooking problems	Oven runs but does not heat	<p>Check if HV Diode is short.</p> <p>Check if HV Transformer is OK.</p> <p>Check if Magnetrom is short.</p> <p>Check if Magnetron dome (or antenna) damaged from arcing (if this is the case, check for a stalled stirrer/antenna).</p> <p>Check if there is a Magnetron Insulator breakdown.</p> <p>Have a visual inspection for Short in HV wiring.</p> <p>Short HV Capacitor- Check if Fuse blows after start of cooking-</p> <p>Check with HV Diode-whether it is Open.</p> <p>Test for Open Magnetron Filament</p> <p>Check if Intermittent or oxidized connection to one or both magnetron filament terminals. Check if the HV transformer is Open Circuit(usually the primary winding)</p> <p>Test if the interlock switch is defective</p> <p>Burned slip-on connector to interlock switch. “Inspect and repair as necessary.</p> <p>Test for Defective triac.</p> <p>Test if there is Open fuse in HV circuit (more common in commercial models)</p> <p>Test if there is Open HV capacitor (uncommon)</p>

	Low and slow heat	<p>Measure the Line Voltage</p> <p>Magnetron will need replacement in the following cases:</p> <ul style="list-style-type: none"> - Magnetron used for more than 2,000 hours. -Cracked magnet(s) can be fixed after inspection. -Burned dome (antenna) can be fixed after inspection -Magnetron insulator breakdown can be fixed after inspection
	Intermittent heat	Intermittent or oxidized/burned connection to one or both magnetron filament terminals can be fixed after inspection . There can be a burned slip-on connector due to a poor crimp joint, 'hr weakened connection. Which can be repaired or replaced as necessary.
	Hot spots because of uneven heating	Check for mechanical bind, loose terminal connection or open motor windings
	Starts cooking by itself OR Only cooks at full power	Test for Defective triac and replace if required.
Mains Power Problem	Completely dead (as though unplugged) Goes dead intermittently Goes dead in mid-cycle (overheats)	<p>Check for mechanical bind, loose terminal connection or open motor windings.</p> <p>Inspect and Clean as necessary</p> <p>Inspect and Clean as necessary</p>
Timer, Control Panel or Function Problem	Timing problem	Check for mechanical bind, loose terminal connection or open motor windings
	Control Panel and mode selection or operations problem	Defective touch panel (keypad). NOTE: If none of the pads respond, the problem could be elsewhere.
	Display Problem	Defective control board (main printed circuit board) or sensor unit.) or Display board defective. Replace or repair as required

Function of Important Parts of a Microwave Oven

1. **The High Voltage Rectifiers:** The high-voltage rectifier (diode) works along with the high-voltage capacitor to effectively double the already high voltage that is provided by the power transformer. This powerful voltage, about 3000 - 5000 volts DC (depending on the model), is applied to the magnetron tube, causing it to produce the microwave energy that cooks the food.

ప్రా-వోల్టేజ్ రెక్షిషైయర్లు: ప్రా-వోల్టేజ్ రికిషైయర్ (డయోడ్) ప్రా-వోల్టేజ్ కెపాసిటర్లో పాటు ఇప్పటికే ఉన్న అధిక వోల్టేజ్సు సమర్థవంతంగా రెట్రింపు చేయడానికి పనిచేస్తుంది.

శక్తి టర్మానాన్యార్కుర్ అందించిన. ఈ శక్తివంతమైన వోల్టేజ్, 3000 - 5000 వోల్ట్లు DC (మొదట ఆధారంగా), మాగ్నెట్రాన్ గొట్టంకు వర్తించబడుతుంది, తద్వారా ఇది ఆపోరాన్ని ఉడికించే మైక్రోవేవ్ శక్తిని ఉత్పత్తి చేస్తుంది.

Caution- before doing any test unplug the microwave oven and discharge all hv capacitors.

Testing the HV diode requires an ohm meter with at least a 6 volt battery in order to accurately measure the front to back resistance of the diode. Meters with insufficient battery power may read infinite resistance (open) in either direction, mistakenly showing a good diode as being open.

The following resistance tests a diode and conclusively indicate a shorted diode. On physical inspection In most cases, defective diodes, whether shorted or open, will show some physical signs of the defect, such as a burned crack, a blistered spot, or it may even be split in two. Also, a shorted diode will usually give off a pungent burning odour.

మైక్రోవేవ్ ఒవెన్ యొక్క ముఖ్యమైన భాగాలు యొక్క పని

1. ప్రా-వోల్టేజ్ రెక్షిషైయర్లు: ప్రా-వోల్టేజ్ రికిషైయర్ (డయోడ్) ప్రా-వోల్టేజ్ కెపాసిటర్లో కలిసి ఇప్పటికే ఉన్న అధిక వోల్టేజ్సు సమర్థవంతంగా రెట్రింపు చేస్తుంది.

శక్తి టర్సాన్సార్క్యూర్ అందించిన. ఈ శక్తివంతమైన ఎల్సైజ్, 3000 - 5000 వోల్టు DC (మొడల్ ఆధారంగా), మాగ్నెటరాన్ గొట్టంకు వర్తించబడుతుంది, తద్వారా ఇది ఆపోరాన్ని ఉడికించే మైక్రోవేవ్ శక్తిని ఉత్పత్తి చేస్తుంది.

పోచ్చరిక- ఏడైనా పరీక్ష చేయటానికి ముందు మైక్రోవేవ్ ఒవెన్ను అనుగ్గి చేయిండి మరియు అన్ని HV కెపాసిటర్లు డిచార్జ్ చేయాలి.

HV డయోడును పరీక్షిస్తే కనీసం ఒక 6 బల్ల్ బ్యాటరీతో ఒక్క మీటర్ అవసరమవుతుంది, డయోడ్ యొక్క ప్రతిఫుటను సరిచేయడానికి ముందుగా కొలిచేందుకు. తగినంత బ్యాటరీ శక్తిని కలిగి ఉన్న మీటర్లు అనంతమైన నిరోధకతను (ఒపెన్) e & ch దిశల్లో చదవవచ్చు, తద్వారా సరిగ్గా మంచి డయోడును ఒపెన్ఫా చూపించడం జరుగుతుంది.

కింది ప్రతిఫుటన ఒక డయోడును పరీక్షిస్తుంది మరియు నిర్దిష్టంగా ఒక చిన్న డయోడును సూచిస్తుంది.

భోతిక పరిశీలనలో చాలా సందర్భాల్లో, లోపభూయిష్ట డయోడు, చిన్నదిగా లేదా తెరిచినప్పుడు, దెబ్బతిన్న పగుళ్లు, ఎగిరిన స్పార్ట, లేదా ఇది రెండింటిలో కూడా విభజించబడవచ్చు వంటి కొన్ని భోతిక సంకేతాలు కనిపిస్తాయి. కూడా, ఒక చిన్న డయోడ్ సాధారణంగా ఒక తీవ్రమైన దహనం వాసన ఆఫ్ ఇస్తుంది.

Practical Exercise-Testing the HV Diode

Test Procedure for Testing HV Diode:

- Unplug the oven and open the screws and open the outer cover and locate the HV Diode.
- DISCHARGE ALL HIGH VOLTAGE CAPACITORS as per recommended procedure.
- Carefully remove the lead that goes to the capacitor (the ground connection may remain attached)
- Set the ohmmeter to read ohms at a scale of 10 K or higher.
- Measure the resistance in FORWARD BIAS across the terminals of the diode by

touching the positive meter probe to the anode and the negative probe to the cathode (the cathode is the side that goes to ground, usually marked by an a^tow, dot or stripe).

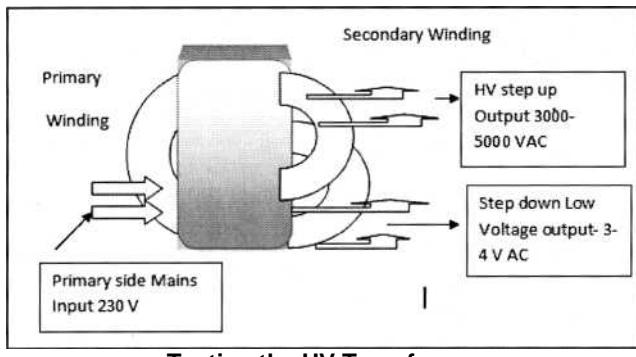
- A normal diode, depending on make and model, should read about 50,000 to 200,000 ohms.
- Reversing the leads (REVERSE BIAS) should produce a reading of infinity (open), unless there is a bleeder resistor across the diode, in which case the reading would show the [megohm] value of the resistor.
- If the meter shows continuity in both the directions, the diode is shorted. If infinity is read in both directions, the diode is open. In both the cases the diode should be replated.
- In some models the diode is located inside of the high voltage capacitor. In this case, identify the diode terminal and perform the same test as above, measuring from the diode terminal to the capacitor's metal case.

చెప్పింగ్ గ్లోబ్ కోసం చెప్ప వేరొసీజర్:

- ఒవెన్న అన్స్ గ్లోబ్ చేయండి మరియు మరలు తెరిచి బయటి కవర్లు తెరిచి, HV డయోడ్లు గుర్తించండి.
- సిపార్సు చేసిన విధానం ప్రకారం అన్ని ప్రోబ్లేజ్ కెపాసిటిట్లను విడదీయండి.
- కెపాసిటర్లు వెళ్ళి ప్రధానతను జాగ్రత్తగా తీసివేయండి (గ్లోబ్ కనెక్ట్ జోడించబడి ఉండవచ్చు)
- ఓంమిమీని చదివే 10 కిలో లేదా అంతకంచే ఎక్కువ ఎత్తులో చదువుకోండి.
- డయోడ్ చెర్కెనల్ BIAS లో యానోడ్లు అనుకూలమైన మీటర్ పేర్బు తాకడం మరియు క్యాథోడ్లు ప్రతికూల పేర్బ్ (కాథోడ్ అనేది సాధారణంగా ఒక a tow, dot లేదా గీత).
- తయారు మరియు నమూనా ఆధారంగా ఒక సాధారణ డయోడ్ 50,000 నుండి 200,000 ఒమ్ము చదివి ఉండాలి.

డయోడ్ అంతటా రక్తస్వరం నివారించి ఉన్నట్టయితే తప్ప, లీట్స్ (రివర్స్ BIAS) ను అప్రతిష్టత (ఒవెన్) పరసం చేయాలి, ఈ సందర్భంలో పరసం మనుగడ యొక్క [మెగోమ్] విలువను చూపుతుంది.

- రెండింటిలోనూ మీటర్ కొనసాగింపు చూపిస్తే, డయాడ్ తగ్గుతుంది. రెండు దిశలలో అనంతం చదివినట్లయితే, డయాడ్ తెరవబడుతుంది. రెండు సందర్భాల్లో డయాడ్ rd ప్రానంలో ఉండాలి.
- కొన్ని నమూనాలు డయాడ్ అధిక వోల్టేజ్ కెపాసిటర్ లోపల ఉంది. ఈ సందర్భంలో, డయాడ్ చెరిగును గుర్తించి, డయాడ్ చెరిగునల్ నుండి కెపాసిటర్ యొక్క మెటల్ కేసు వరకు కొలిచే, పైన ఉన్న అదే పరీక్షను అమలు చేయండి.


High Voltage Transformer

HIGH-VOLTAGE TRANSFORMER as the name implies High Voltage to the unit is the POWERHOUSE of the microwave oven. With an input of 240 VAC applied to the primary winding, the high-voltage transformer (also referred to as power or plate transformer) steps up that primary voltage to a very high voltage. This high voltage is then boosted even higher by the voltage-doubling action of the capacitor and diode. The resulting voltage, about 3000 - 5000 volts DC (depending on the model), is available at the high voltage (output) tap (see illustration).

The transformer also has a second output winding which is stepped-down output that provides the filament voltage (typically 3 to 4 VAC) to the magnetron tube. It is dangerous to measure this voltage.

ప్రా-వోల్టేజ్ టీరానాప్పర్చర్ పేరును సూచిస్తుంది, యూనిట్సు అధిక వోల్టేజ్ అనేది మైక్రోవేవ్ ఒవెన్ యొక్క POWERHOUSE. పేరాధిమిక మూసివేతకు 240 VAC యొక్క ఇన్పుట్ తో, అధిక-వోల్టేజ్ టీరానాప్పర్చర్ (శక్తి లేదా ఫ్లైట్ టీరానాప్పర్చర్ అని కూడా పిలువబడుతుంది) పేరాధిమిక వోల్టేజ్సు అధిక వోల్టేజ్సు వేసింది. ఈ అధిక వోల్టేజ్ అప్పుడు కెపాసిటర్ మరియు డయాడ్ యొక్క వోల్టేజ్-రెట్టింపు చర్య ద్వారా మరింత ఎక్కువైంది. ఫలితంగా వోల్టేజ్, సుమారు 3000 - 5000 వోల్ట్ DC (మోడల్ ఆధారంగా), అధిక వోల్టేజ్ (అప్పట్టుట్టే) ట్ర్యాప్ పద్ధతి అందుబాటులో ఉంది (ఉడాపరణ చూడండి). టీరానాప్పర్చర్ కూడా రెండవ అప్పట్టుట్టే విండింగ్సు కలిగి ఉంది, ఇది మాగ్నెట్రాన్ గొట్టంకి పిలమెంట్ వోల్టేజ్ (సాధారణంగా 3 to 4 VAC) ను

ಅಂದಿಂಚೆ ಅವಟ್ಟುವುಟ್ಟ ಷಾಂಪ್ ಉಂದಿ. ಈ ವೋಲ್ಟೇಜ್ ಕೊಲಿಚೆ ಪ್ರಮಾದಕರಂ.

Testing the HV Transformer

Practical Exercise: Testing the HV Transformer

Caution: Before doing any test unplug the microwave oven and discharge all HV capacitors

1. UNPLUG the oven and open the oven.
2. DISCHARGE ALL HIGH-VOLTAGE CAPACITORS as per specified procedures.
3. Disconnect the high-voltage lead from the transformer's high-voltage terminal .
4. With an ohmmeter set to the lowest resistance scale, R X 1, measure the resistance from the high-voltage terminal to the transformer chassis which is grounded. I'm models having two or three high-voltage taps perform the measurement from each tap to chassis ground.
5. The meter should read about 55 to 70 ohms, depending on which high-voltage tap is being measured and the model being tested. A substantially higher or lower reading would indicate that the transformer Is defective.
6. Carefully disconnect the leads from the primary (input) terminals.
7. Measure from one transformer primary terminal to the other for a normal reading of less than 1 ohm . A substantially higher reading would indicate that the primary winding is open.
8. Set the meter to its highest resistance scale and check from each transformer primary terminal to the transformer chassis (ground) for a normal reading of infinity (open circuit). Any measurement of resistance would indicate some degree of a short to ground
9. Set the meter back to its lowest resistance scale. Then carefully disconnect the filament leads and measure from one filament terminal to the other for a normal resistance of

less than 1 ohm.

10. Set the meter to its highest scale and measure from each filament terminal to chassis ground for a normal reading of infinity (open circuit). Any measurement that is substantially different from the normal readings would indicate a defective transformer.

1. పొయిని నిలువరించండి మరియు పొయిని తెరవండి.
2. పేర్కొన్న విధానాలకు అనుగుణంగా అన్ని ప్రై-ఒల్టేజి కెపాసిటీలను విడదీయండి.
3. టీరానాప్రైర్ యొక్క ప్రై-వోల్టేజ్ చెరికైన్ నుండి ప్రై-వోల్టేజ్ లీటును డిస్క్యూనెక్స్ చేయండి.
4. తక్కువ నిరోధకత షాయికి అమరించ ఒమ్మెమెటరుతో, $R \times 1$, నిరోధక ఇటును అధిక-వోల్టేజ్ చెరికైన్ నుండి టీరానాప్రైర్ చుట్టం వరకు కొలుస్తుంది. నేను రెండు లేదా మూడు అధిక ఒల్టేజి కుళాయిలు చుట్టం మైదానంలో ప్రతి ట్యూప్ నుండి కొలత నిర్వహించడానికి కలిగి నమూనాలు ఉన్నాను.
5. మీటర్ 55 నుంచి 70 ఒమ్మ చదువుకోవాలి, అధిక ఒల్టేజి ట్యూప్ కొలుస్తారు మరియు మోడల్ పరీక్షించబడాలి. టీరానాప్రైర్ డెలికైట్ అని చెప్పకోదద విధంగా ఎక్కువ లేదా తక్కువ షాయికి చేరుకుంటుంది.
6. పీరాధమిక (ఇన్స్పెక్టర్) చెరికైన్ నుండి లీటున్న జాగ్రత్తగా డిస్క్యూనెక్స్ చేయండి.
7. ఒక సాధారణ టీరానాప్రైర్ పీరాధమిక చెరికైన్ నుండి మరొకదానికి 1 ఒమ్ కంచే తక్కువ చదవటానికి కొలత. గణనీయంగా అధిక పరనం పీరాధమిక మూసివేయటం తెరిచినట్లు సూచిస్తుంది.
8. దాని అత్యధిక నిరోధక షాయికి మీటర్ ను సెట్ చేసి అనంతం (ఒపెన్ సరూచ్యట్) యొక్క సాధారణ పరనం కోసం ప్రతి టీరానాప్రైర్ పీరాధమిక చెరికైన్ నుండి టీరానాప్రైర్ చుట్టం (మైదానం) నుండి తనిఖీ చేయండి. ప్రతిఘటన యొక్క ఏ కొలత కొంత కొంచెం తక్కువగా ఉంటుంది

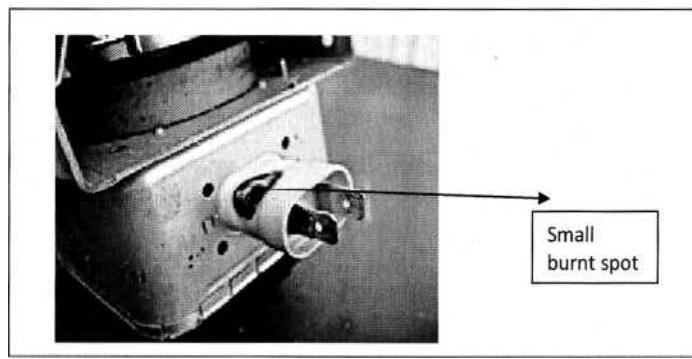
9. దాని అతి తక్కువ ప్రతిఘటన పోయికి మీటర్లు తిరిగి అమర్చండి. అప్పుడు 1 నిముపాల కన్నా తక్కువ నిరీధకత కోసం ఫిలమెంట్ చెర్కెనల్ నుండి మరొకదానికి ఫిలమెంట్ లీడ్స్ మరియు కొలతను జాగ్రత్తగా డిస్కునెక్స్ చేయండి.
10. మీటర్లు దాని అత్యధిక పోయికి మరియు అనంతం (ఒపెన్ సర్క్యూట్) యొక్క ఒక సాధారణ పరసం కోసం చట్టం మైదానానికి ప్రతి ఫిలమెంట్ చెర్కెనల్ నుండి కొలిచండి. సాధారణ రీడింగుల నుండి గణనీయంగా భిన్నమైన ఎడ్డొకొలత ఒక లోపభూయిష్ట టీరానాన్నిర్కురు సూచిస్తుంది.

Magnetron

THE MAGNETRON is the heart of a microwave oven. It produces RF energy of 2.45 GHz and radiates the energy into the cooking cavity where it is absorbed by the molecules of the food. The magnetron uses permanent magnets and a half-wave voltage doubler circuit (the HV capacitor and HV diode) to oscillate and produce the 2450 MHz cooking frequency, thus converting the 50 Hz supply voltage into microwave energy of 2.45 GHz.

Testing the Magnetron: The Magnetron condition can be found out from visual inspection and will require replacement. The following are the visual inspection symptoms that may suggest replacement of the Magnetron:

A small burnt spot on the magnetron insulator - indicates breakdown of insulation material. With subsequent uses it clearly shows visual evidence of the failure. It will produce Loud hum, no heat, arcing sound, electrical burning smell


MAGNETRON

�క మైక్రోవేవ్ ఒవెన్ యొక్క గుండె. ఇది 2.45 GHz యొక్క RF శక్తిని ఉత్పత్తి చేస్తుంది మరియు అది శక్తి యొక్క అణవులచే గ్రహించే వంట కుహారంలో శక్తిని ప్రసరిస్తుంది. మాగ్నెటర్సన్ శాశ్వత అయస్కాంతాలను మరియు సగం వేవ్ వోల్టేజ్ రోటర్ సర్క్యూట్ (HV కెపాసిటర్ మరియు HV డయాడ్) ను 2450 MHz వంట ఫరీకోన్సీకి డీలనం చేయడం మరియు ఉత్పత్తి చేస్తుంది, తద్వారా 50 Hz సరఫరా ఒల్టేజిని 2.45 GHz యొక్క మైక్రోవేవ్ శక్తిగా మారుస్తుంది.

మాగ్నెటర్సన్ పరీక్ష: మాగ్నెటర్సన్ పరిష్కారించి దృశ్య తనిఖీ నుండి కనుగొనవచ్చు మరియు భర్తీ అవసరం అవుతుంది. మాగ్నెటర్సన్ యొక్క భర్తీని సూచించే దృశ్య తనిఖీ లక్షణాలు కీరిందివి:

మాగ్నెటరాన్ ఇన్సులేటర్స్ ఒక చిన్న కాలిన ప్లాస్టిక్ - ఇన్సులేషన్ పదార్థం యొక్క విచ్చేదం సూచిస్తుంది. తరువాతి ఉపయోగాలు స్పష్టంగా వైఫల్యం యొక్క దృశ్య ఆధారాలు కనిపిస్తాయి. ఇది లౌడ్ హామ్, ఎ హీట్, ఆర్ట్రూంగ్ సొండ్, ఎలక్షిక్ బర్బూంగ్ సైల్ లను ఉత్పత్తి చేస్తుంది

The Magnetron will need replacement. The problem is depicted in the following picture:

g
u

Figure 11.4 A Small burnt spot indicating replacement of Magnetron

Cracked Magnet(s)- Will have symptoms of weak or no heat, magnetron gets extremely hot (overheats), intermittent arcing or “snapping” sound

Magnetron will need replacement

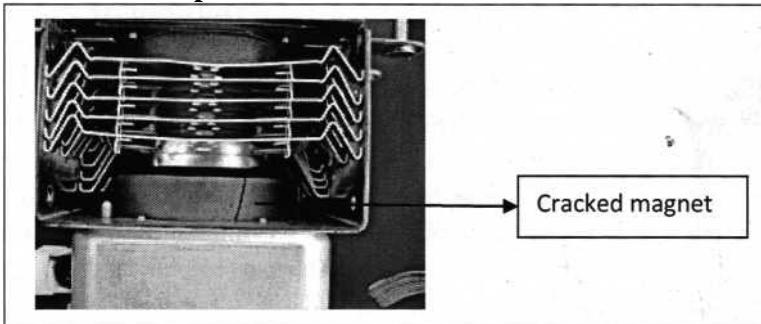


Figure 11.5: A cracked magnet in a magnetron indicating replacement of Magnetron

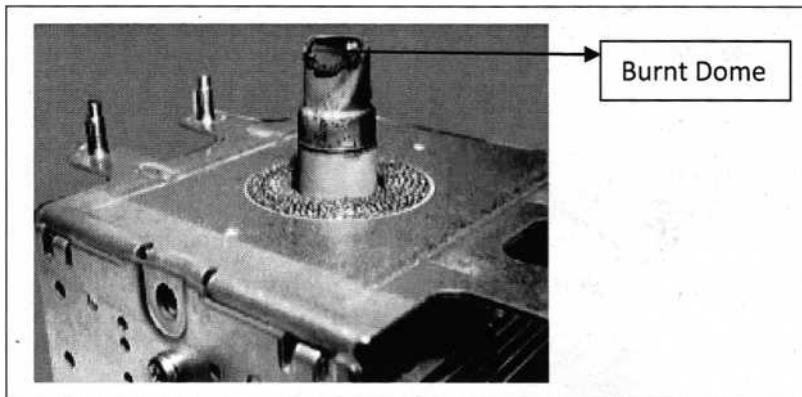
Burnt Dome (or Antenna) is caused by arcing due to back feeding microwave energy. When this occurs, check for a stalled or arcing stirrer blade or non-rotating antenna assembly. In

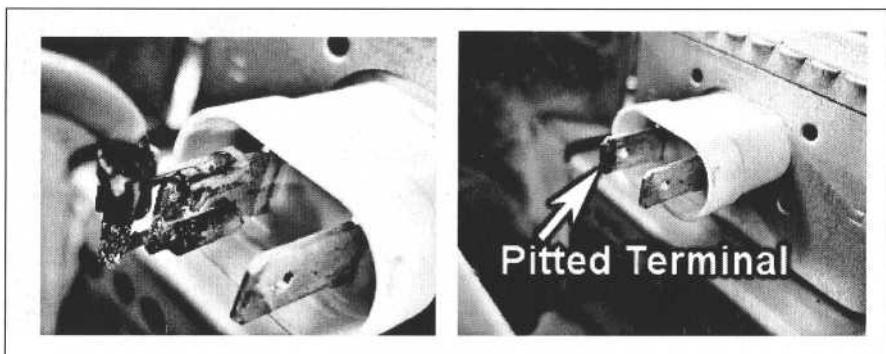
units with multiple magnetrons, the cooking tray has to be raised in order inspect the condition of the lower antenna assembly. This also will show weak or no heat and arcing sound during the cook cycle.

In this case the Magnetron needs to be replaced and if damaged badly the antenna and stirrer assembly also need to be replaced.

తిరిగే డీమ్ (లేదా యాంచెన్స్) బ్యాక్ ఫీడ్ మైకోవ్వెవ్ ఎన్డ్రీ కారబంగా ఆర్టిస్ చేస్తారు. ఇది సంభవించినప్పుడు, ఒక నిలిచిపోయిన లేదా ఆర్ధవైష్ణవ్ కదిలే భేదు లేదా నాన్-రోచేటింగ్ యాంచెన్స్ అసెంబ్లీ కోసం తనిటీ చేయండి. బహుళ మాగ్నెటర్ రాఫ్ట్ కూడిన యూనిట్లలో, తక్కువ యాంచెన్స్ అసెంబ్లీ యొక్క షితిని తనిటీ చేయడానికి వంట టీర్ పెంచాలి. ఇది కుక్ చక్రం సమయంలో బలహీనమైన లేదా వేడిని మరియు ధ్వనిని చూపుతుంది.

ఈ సందర్భంలో మాగ్నెటర్ రాఫ్ భర్తీ చేయవలసి ఉంటుంది మరియు యాంచెన్స్ మరియు షిర్కర్ అసెంబ్లీ కూడా భర్తీ చేయవలసి ఉంటుంది.




Figure 11.6: Burnt Dome indicating replacement of Magnetron

Loose Magnetron Filament Connectors OR Discoloration of the connector(s) or plastic insulator(s):

If the connectors connecting the magnetron filament terminals become loose or are improperly crimped, it causes a build up of resistive heat. As this occurs the connection further deteriorates causing Small blackened pits in the magnetron terminal(s) and or Melted, and decayed appearance and a large spark is produced when discharging

the capacitor. When this happens it will have effect of intermittent and/or low heat initially, then eventually no heat in the cavity.

మాగ్నెట్రాన్ ఫిల్ట్రంట్ చెర్కెనల్సును అనుసంధానిస్తున్న అనుసంధకులు వదులుగా ఉంచే లేదా సరిగ్గా ఖండించబడక పోతే, ఇది రెసిప్రోవ్ హీటును నిర్మించటానికి కారణమవుతుంది. ఇది సంభవిస్తుండటంతో కనెక్టన్ మరింత క్లీషిస్తుంది మాగ్నెట్రాన్ చెర్కెనల్ (లు) మరియు మెలట్ లో చిన్న నల్లబడిన పిట్లను కలిగించేది, మరియు క్లీషించిన ప్రదర్శన మరియు డిస్చార్టింగ్ సమయంలో పెట్ట స్పార్క్ ఉత్పత్తి అవుతుంది కెపాసిటర్. ఇది సంభవించినప్పుడు ఏరారంభంలో అడపాదడపా మరియు / లేదా తక్కువ వేడి ప్రభావాన్ని కలిగి ఉంటుంది, తరువాత చివరికి కుహరంలో వేడి లేదు.

Figure 11.7: Burnt or pitted terminals or connector sheaths

In such cases the replacement of Magnetron will not be required. However repair defective terminals as follows:

Clean the burnt magnetron terminals and replace the slip-on connectors, making sure they fit tightly on the terminals; or Cut away burned wire and connector(s). Clean terminals to prepare and Solder the filament leads directly to the magnetron. Do not apply solderingheat for longer time if it is not necessary.

ఇటువంటి సందర్భాల్లో మాగ్నెట్రాన్ ప్లానంలో అవసరం లేదు. అయితే మరమ్మత్తు లోపభూయిష్ట చెర్కెనల్స్ కీరింది విధంగా ఉన్నాయి:

మరిగించిన మాగ్నిటరాన్ చెర్చినలున్న శుభ్రపరచండి మరియు స్టిప్-ఆన్ కనెక్టర్లకు బదులుగా, అవి చెర్చినలైన కరినంగా సరిపోయేలా చూసుకోవాలి; లేదా మండే వైర్ మరియు కనెక్టర్ (లు) ను కత్తిరించండి. తయారుచేయడానికి క్లీన్ చెర్చినల్ని మరియు టంకము తవ్వకం మాగ్నిటరాన్కు నేరుగా దారి తీస్తుంది. అవసరమైతే సుదీర్ఘకాలం సాల్టీర్టీట్ దరఖాస్తు చేయవద్దు.

TESTING THE MAGNETRON

Practical Exercise: Testing and replacing a Magnetron

Caution: before doing any test unplug the microwave oven and discharge all HV capacitors

Unplug the oven.

DISCHARGE ALL HIGH VOLTAGE CAPACITORS as per specified procedures. Make sure that all leads are removed from the magnetron terminals.

ఒవెన్ ను అన్వేగ్ చేయండి. పేర్కిన్న విధానాలకు అనుగుణంగా అన్ని ప్రోవ్సోఫ్ కెపాసిటర్లను విస్కరించండి. మాగ్నిటరాన్ చెర్చినల్ని నుండి అన్ని లీడ్లు తొలగించబడ్డాయని నిర్మారించుకోండి.

Testing for Filament Resistance (Low Resistance Test)

Keep the DMM to its lowest resistance scale.

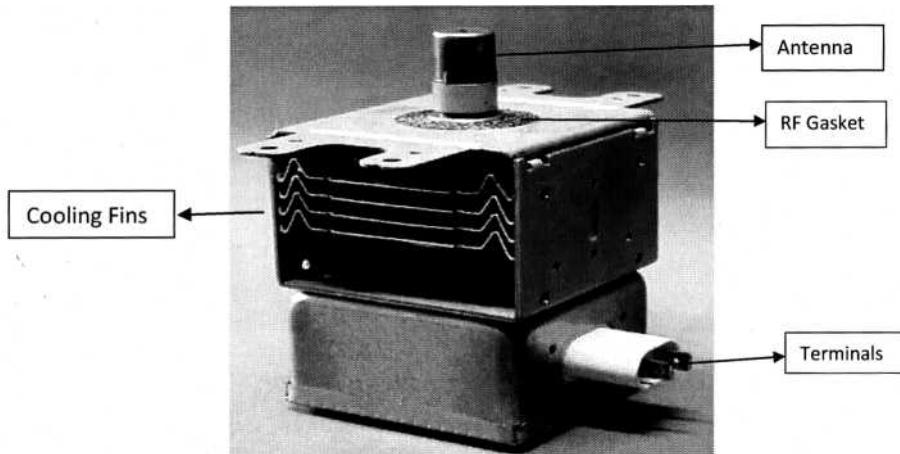
Measure the resistance from one magnetron terminal to the other in either direction. The magnetron filament resistance should be less than one ohm.

DMM దాని అత్యల్ప నిరీధక పోయికి ఉంచండి.

ఒక మాగ్నిటరాన్ టర్మినల్ నుండి మరొక వైపుకు దిశలో ప్రతిఫుటనను కొలిచండి.

మాగ్నిటరాన్ ఫిలమెంట్ నిరీధకత ఒక ఒంకంటే తక్కువగా ఉండాలి.

Testing for the short circuiting of Magnetron housing-(High Resistance Test)


Keep the DMM to highest resistance scale and check the resistance from the magnetron terminals to the metal magnetron housing.

The meter should show infinity open circuit regardless of meter polarity.

Even a slight reading would indicate a defective magnetron.

ಅದಿಕ ನಿರ್ದಿಷ್ಟತ ಪ್ರಾಯಕ್ಕಿ DMM ನು ಉಂಟಂಡಿ ಮರಿಯ ಮಾಗ್ನೆಟ್ರಾನ್ ಚರ್ಚಿನಲ್ಲಿ ನುಂಡಿ ಮೆಟಲ್ ಮಾಗ್ನೆಟ್ರಾನ್ ಹಾಸಿಂಗ್ ವರಕು ನಿರ್ದಿಷ್ಟಂ ತನಿಖೀ ಚೆಯಂಡಿ. ಮೀಟರ್ ಧೀರುವಣತತ್ತ್ವ ಸಂಬಂಧಂ ಲೇಕುಂಡಾ ಅನಂತಂ ಒರ್ಪನ್ ಸರ್ಕಾರ್ಯಾತ್ಮು ಮೀಟರ್ ಪ್ರದರ್ಶಿಂಚಾಲಿ. ಕೊಡಿಪಾಟಿ ಪರನಂ ಕೂಡಾ ಒಕ ಲೋಪಭಾಯಿಷ್ಟ ಮಾಗ್ನೆಟ್ರಾನ್‌ನು ಸೂಚಿಸ್ತುಂದಿ.

Replacing a Magnetron:

Figure 11.8: Atypical Magnetron

The following should be kept in mind while replacing a Magnetron:

1. Do not touch the antenna dome area.
2. Be sure to transfer any add-on parts, such as an air duct or thermal fuse
3. Make sure that the wire mesh RF gasket is intact and in place
4. Examine the rim of the opening where the magnetron dome is to be inserted into the waveguide. Smooth out any irregularities, such as dents, pits, and burns. The rim surface should be bare metal, smooth to the touch. Use light-grade sandpaper - do not use steel wool.
5. If the terminal connections are found discolored, burnt, pitted connectors then repair or replace the slip-on connectors on the filament leads.
6. Perform an RF leakage check around the magnetron

ఈక మాగ్నెట్రాన్స్‌ భర్త చేసేటప్పుడు కింది విషయాన్ని మనసులో ఉంచుకోవాలి:

1. యాంచెనాన్ గోపురం పేరాంతం తాకే లేదు.
2. ఒక ఎయిర్ డ్యూక్ లేదా థర్మల్ ఫ్ర్యూజ్ వంటి ఆదనపు అనుబంధ భాగాలను బదిలీ చేయడానికి నిర్ధారించుకోండి
3. వైర్ మెస్ ఆర్ రబ్బరు పట్టే చెక్కుచెదరకుండా మరియు ప్లానంలో ఉంది నిర్ధారించుకోండి
4. మాగ్నెట్రాన్ గోపురం వేవ్ గైడ్ లోకి చొపించాల్సిన పేరారంభానికి సంబంధించిన అంచుని పరీక్షించండి. డెంట్లు, గుంటలు మరియు బర్మను వంటి ఏదైనా అసమానతలను తొలగించండి. నేను ఆతను ఉపరితల టచ్ కు మృదువైన, బేర్ మెటల్ ఉండాలి. లేత గీరేడ్ సాండ్యాపిక్సిని ఉపయోగించండి - ఉక్క ఉన్నిని ఉపయోగించవద్దు.
5. చెరిగునల్ కనెక్టన్లు గుర్తించబడితే, దహనం చేయబడినవి, కత్తిరించిన కనెక్టర్లకు అప్పుడు ఫిల్ట్రేషన్ లీట్రేస్ స్లిష్ట్-ఆన్ కనెక్టర్లను రిపేరు చేయండి లేదా భర్త చేయండి.
6. మాగ్నెట్రాన్ చుట్టూ ఒక ఆర్ లీకేజ్ చెక్ ను జరుపుము

High Voltage Capacitors

A combination of HV Diode and HV Capacitor is connected at the output of I hr High Voltage Transformer. This combination of Diode and Capacitor doubles the already High voltage present at the output of the HV Transformer. The capacitor can hold a fatal electrical charge long after the oven has been unplugged. Thus it is essential to Discharge this HV Capacitor before making any test or replacement.

HV డయాడ్ మరియు HV కాపాసిటర్ యొక్క కలయిక అవుట్టుట్ 01 I hr ప్రై వోల్టేజ్ టీరానాన్సర్క్రూల్ అనుసంధానించబడింది. డయాడ్ మరియు కాపాసిటర్ యొక్క కలయిక ఇప్పటికే HV టీరానాన్సర్క్రూల్ యొక్క అవుట్టుట్ వద్ద ప్రై వోల్టేజ్

ప్రస్తుతం డబుల్స్ రెట్టింపు. ఒవెన్ అన్నార్స్ అయిన తర్వాత క్యాపిచ్చల్యు ఒక దీర్ఘకాల విద్యుత్ చార్టీ కలిగి ఉంటుంది. అలాంటి పరీక్ష లేదా పునఃప్రాపనకు మందు ఈ హేచ్.వి.

TESTING HV CAPACITOR: BEFORE TESTING ANY CAPACITOR IT SHOULD BE DISCHARGED

Practical Exercise: How to discharge a HV Capacitor Caution-
Before doing any test unplug (ie microwave oven and discharge all HV capacitor

Figure 11.9: A Typical HV Capacitor

How to Discharge the Capacitor

1. **Quick discharge method** This capacitor is discharged by creating a short circuit (direct connection) between the two capacitor terminals and from each terminal to chassis ground (bare metal surface) with two screw drivers having effective insulated handle.
 - a. Touch the blade of an insulated-handled screw driver to one terminal, then slide it toward the other terminal until it makes contact and hold it there for a few seconds. If the Oven was in use just before testing then the capacitor will be holding charges and will make a spark. And if there is Spark the capacitor is a good one.
 - b. Repeat the procedure to create a short between each capacitor terminal and chassis ground.

త్వరిత ఉత్పాదక మాన్యము. రెండు కెపాసిటర్ చెర్క్చనల్ని మరియు ప్రతి చెర్క్చనల్ నుండి చ్చటం మైదానం (బేర్ మెటల్ ఉపరితలం) మధ్య ఒక చిన్న

సరూప్యట్ (ప్రత్యక్ష అనుసంధానం) ను సృష్టించడం ద్వారా కెపాసిటర్ డిశాప్రైద్ అవుతుంది.

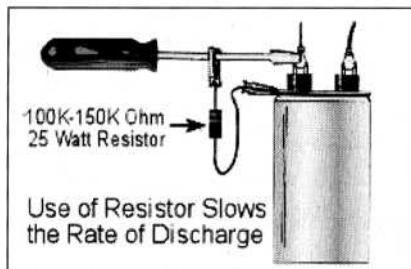
- a. ఒక. ఒక చెరిగైనలుకు ఒక ఇన్సులేచెడ్-హోండ్ ప్రూప్ డిస్ట్రైవర్ యొక్క జ్యోతి తాకి, ఆపై దానిని ఇతర చెరిగైనల్ వైపుకు లాగి, కొన్ని సెకన్డ్స్ పాటు దానిని సంప్రదించి దానిని పట్టుకోండి. ఒవెన్ ఆప్సింగ్ చేయడానికి మరిందే వినియోగంలో ఉన్నట్లయితే అప్పుడు కెపాసిటర్ ఆరోపణలు చేస్తాడు మరియు ఒక సార్క్ చేస్తుంది. మరియు సార్క్ ఉన్నట్లయితే కెపాసిటర్ మంచిది.
- b. ప్రతి కెపాసిటర్ చెరిగైనల్ మరియు చట్టం మైదానానికి మధ్య ఒక చిన్న సృష్టించడానికి విధానాన్ని పునరావృతం చేయండి.

2. **Discharge with bleeder resistance:** Attach one end of a 100K - 150K ohm, 25 watt resistor to the bare metal chassis with an alligator clip. Attach the other end of the resistor to the FLAT TIP of a well insulated screwdriver.

Touch the TIP of the screwdriver to one of the capacitor terminals and hold it there for a few seconds. Then repeat the procedure for the other terminal.

To ensure that the capacitor is fully discharged, follow the first method. •

ఎలిగేటర్ క్లిష్టో బేర్ మెటల్ చట్టంకు 100K - 150K ఓప్ప్, 25 వాట్ రెసిప్పార్ యొక్క ఒక ముగింపును జత చేయండి. బాగా ఇన్సులేచెడ్ ప్రూప్ డిస్ట్రైవర్ యొక్క FLAT TIP కు మలుపును ఇతర ముగింపుకు అటాచ్ చేయండి.


ప్రూప్ డిస్ట్రైవర్ యొక్క TIP ను కెపాసిటర్ చెరిగైనల్లో ఒకదానికి తాకండి మరియు కొన్ని సెకన్డ్ పాటు అక్కడే ఉంచండి. అప్పుడు ఇతర చెరిగైనల్ కోసం విధానం పునరావృతం.

కెపాసిటర్ పూర్తిగా డిసార్క్ చేయబడిందని నిర్మారించుకోవడానికి, మొదటి పద్ధతిని అనుసరించండి.

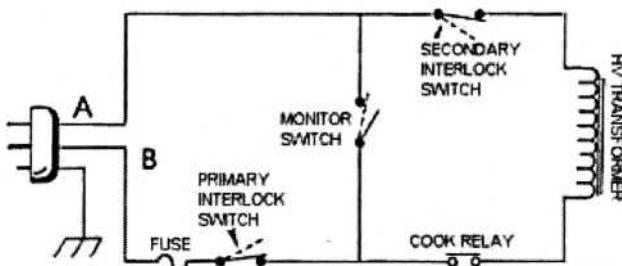
Figure 11.10: Quick Discharge Test

Figure 11.11: Discharge with bleeder resistor

Capacitor Test Procedure

1. Unplug the oven and open the same.
2. DISCHARGE ALL HIGH VOLTAGE CAPACITORS as per procedures.
3. Set the DMM to its highest resistance scale.
4. If the reading from one terminal to the other is infinity (or the value of the bleeder resistor) the capacitor is good.
5. Now reverse the leads. The meter should momentarily deflect toward the zero mark, then slowly drift back to infinity.
6. Reverse the leads once again. This should produce the same meter deflection.
7. Next measure from each terminal to the capacitor's metal case for a normal reading of infinity. (If there is an internal diode, the meter readings will reflect the diode's forward bias resistance. (See HV diode test procedure)
8. A visual inspection will also reveal certain defects, such as:
 - ❖ Evidence of arcing or burning at the insulators
 - ❖ The presence of an oily film or smell suggests a dielectric (non-conductive medium) leak
 - ❖ A bulging case indicates dielectric breakdown

కెపాసిటర్ లెష్ట్ విధానము 1. ఒవెన్ ను అన్నగ్ చేసి అదే తెరవండి.


2. అన్న హై వోల్టేజ్ కెపాసిటర్లను విధానాలు ప్రకారం విస్కరించండి.

3. డిఎంఎం దాని అత్యధిక నిరోధకత షాయికి అమర్చండి.

4. ఒక లెష్ట్ నుండి మరొకటి చదివినప్పుడు అనంతం (లేదా రక్షస్మారావం నిరోధకం యొక్క విలువ) ఉంచే, కెపాసిటర్ మంచిది.

5. ఇప్పుడు లీడ్స్ రివర్స్. మీటర్ సున్నా మార్కు వైపు మొగ్గుచూచే, అప్పుడు నెమ్ముదిగా తీరిగి అనంతం వరకు వెళ్లండి.
6. మరోసారి లీడ్స్ రివర్స్ చేయండి. ఇది అదే మీటర్ విక్సేపం ఉత్పత్తి చేయాలి.
7. ప్రతి చెరిగైనల్ నుండి కెపాసిటర్ యొక్క మెటల్ కేసుకు తదుపరి కొలత అనంతం యొక్క సాధారణ పరసం కోసం. (ఒక అంతర్ధత డయాడ్ ఉంటే, మీటర్ రీడింగులను డయాడ్ యొక్క ముందుకు పక్కపాతం నిరోధకత ప్రతిబింబిస్తుంది. (HV డయాడ్ పరీక్ష విధానం చూడండి)
8. ఒక దృశ్య తనిఖీ కూడా కొన్ని లోపాలు, వంటి వాటిని బహిర్భూతం చేస్తుంది: ఇన్సులేటర్లో ఆర్కినింగ్ లేదా బరింగ్ యొక్క రుజువులు
9. ఒక జిడ్చు చలనచిత్రం లేదా వాసన యొక్క ఉనికిని ఒక విద్యుద్వాహక (నాన్-వాహక మాధ్యమం) లీక్కి సూచిస్తుంది ❖ ఒక ఉచ్చిన కేసు విద్యుద్వాహక విచ్చేదనం సూచిస్తుంది

Interlock Switch

Simplified Interlock Monitor (Sensing) Circuit
(Shown with oven door closed)

To ensure safe operation, all microwave ovens are equipped with safety interlock switches. The door-interlock system is one of the most significant safeguards in a microwave oven. The purpose of the interlock system is to interrupt the production of microwave energy when the oven door is opened, and similarly, to prevent any microwave output until the door is firmly and safely closed.

A principal component of the interlock system is the interlock monitor switch , The

monitor switch or the safety switch which disables the microwave oven if an interlock failure occurs.

The normal sequence of switch operation when the door is opened is as follows:

1. First the primary switch opens its contacts.
2. Second the secondary switch opens.
3. Finally, the interlock monitor switch closes its contacts.

Thus if any of the switches and/or relays included in the monitor loop (or circuit) fail to open their contacts properly when the door is opened, a short circuit is created when the monitor switch closes its contacts. The closed contacts of the monitor switch and the faultily-closed contacts of the defective switch combine to cause an immediate short circuit, which, in one way or another (depending on the model), blows the line fuse, or otherwise disables the oven. All this happens before the door can be opened far enough to allow any dangerous levels of microwave radiation to escape.

Testing: The interlock switch to be tested in this example has a COM. (common) terminal, a N.O. (normally open) terminal, and a N.C. (normally closed) terminal. Interlock monitor switches are usually constructed with only the COM and N.C. terminals. Other switches are made with just the COM and N.O. terminals. The following tests will cover most circumstances. Simply disregard the terminal-to-terminal tests that do not apply.

1. Unplug the oven and remove the outer cover.
2. **DISCHARGE ALL HIGH VOLTAGE CAPACITOR** as per specified procedure.
3. Physically examine the switch terminals and connectors for signs of overheating, such as discoloration, or brittleness.
 - ❖ Many times the problem is merely a burned slip-on connector due to a poor crimp joint, or weakened connection. If the switch is in good working order, the repair can be made by cleaning the terminals, and replacing the burned connector. Or, simply cut off the burned connectors and solder the wires directly to the switch terminals.

Carefully remove the harness leads from the switch terminals. Try them loose if necessary, but do not exert too much force, or the terminal may break right out of the switch.

- ❖ Many models use a connector with a locking clip in the center of the receptacle terminal. This extruding lever must be pressed down while gently pulling the connector off the terminal.

Set the DMM to read ohms at a scale of RX 1 place one meter probe on the COM terminal and the other probe on the N.O. terminal. With the actuator (or lever, or button) not depressed, the meter should read infinity (an open circuit). Without moving the meter probes, press down on the switch actuator until a "click" is heard. At the point of the click, the meter should swing to a reading of zero ohms (or continuity). A healthy "click" usually means the switch is working normally.

సురక్షిత చర్యను నిర్ధారించడానికి, అన్ని మైక్రోవేవ్ ఒవెన్లు భద్రత ఇంటర్వార్క్ స్మిచ్చు కలిగి ఉంటాయి. మైక్రోవేవ్ ఒవెన్లో తలుపు-పరస్పర విధాన వ్యవస్థ అత్యంత ముఖ్యమైన రక్షణ కవచాల్లో ఒకటి. ఒంచె తలుపు తెరిచినప్పుడు మైక్రోవేవ్ శక్తి యొక్క ఉత్పత్తిని అంతరాయం కలిగించడానికి అంతర నిరోధ వ్యవస్థ యొక్క ఉచ్ఛేశ్యం, అదే విధంగా, తలుపు గట్టిగా మరియు సురక్షితంగా మూన్సె వరకు ఏ మైక్రోవేవ్ ఆపుట్టుట్టు నివారించడానికి.

ఇతివ్యత్తి వ్యవస్థ యొక్క ప్రధాన భాగం ఇంటర్వార్క్ మానిటర్ స్మిచ్చ, మానిటర్ స్మిచ్చ లేదా భద్రతా స్మిచ్చ ఇది మైక్రోవేవ్ ఒవెన్లు ఒక ఇంటర్వార్క్ షైఫల్యం సంభవిస్తుంది. తలుపు తెరిచినప్పుడు స్మిచ్చ ఆపరేషన్ యొక్క సాధారణ క్రమాన్ని ఇలా ఉంటుంది:

1. మొదటి ప్రాథమిక స్మిచ్చ దాని పరిచయాలను తెరుస్తుంది.

రెండవ సెకండరీ స్మిచ్చ తెరుస్తుంది.

చివరగా, ఇంటర్వార్క్ మానిటర్ స్మిచ్చ దాని పరిచయాలను మూన్సివేస్తుంది. మానిటర్ లూప్ (లేదా సరూచ్యట్) లో ఉన్న ఏ స్మిచ్చ మరియు / లేదా రిలేలు తలుపులు తెరిచినప్పుడు సరిగ్గా వారి పరిచయాలను తెరవలేకపోతే, మానిటర్ స్మిచ్చ దాని పరిచయాలను మూన్సివేసినప్పుడు ఒక చిన్న సరూచ్యట్ సృష్టించబడుతుంది. మానిటర్ స్మిచ్చ యొక్క మూసిన పరిచయాలు మరియు లోపబూయిష్ట స్మిచ్చ యొక్క తప్పగా-సంపుత పరిచయాలు వెంటనే పొర్చు సరూచ్యట్లుకై కారణమవుతాయి, ఇది ఒక మార్గం లేదా మరొక (నమూనా ఆధారంగా), లైన్ పూజ్జు శుభ్రం చేస్తుంది లేదా పొయ్యిని నిలిపివేస్తుంది. మైక్రోవేవ్ రేడియోషన్ యొక్క ఏ ప్రమాదకరమైన షాయిలను తప్పించుకోవటానికి తలుపును తలుపులు తెరిచే ముందు ఈ సంభవిస్తుంది.

పరీక్ష; ఈ ఉదాహరణలో పరీక్షించబడే ఇంటర్వార్క్ స్మిచ్చ ఒక COM ఉంది. (సాధారణ) చెరిగైనల్, ఒక N.O. (సాధారణంగా ఒపెన్) చెరిగైనల్, మరియు ఎన్.సి. (సాధారణంగా మూన్సివేయబడింది) చెరిగైనల్. ఇంటర్వార్క్ మానిటర్ స్మిచ్చు సాధారణంగా COM మరియు N.C. చెరిగైనలోన్న మూత్రమే నిర్మిస్తారు. ఇతర స్మిచ్చు కేవలం COM మరియు N.O తో తయారవుతాయి. చెరిగైనల్ని. కీరింది పరీక్షలు చాలా పరిష్కారితులలో ఉంటాయి. వర్తించని చెరిగైనల్-టు-చెరిగైనల్ పరీక్షలను విస్కరించు.

1. ఒవెన్ ను అన్నగీ చేయండి మరియు బాహ్య కవర్సు తీసివేయండి.
2. నిర్ధిష్ట విధానం ప్రకారం అన్ని ప్రై ఎల్సైజ్ కెపాసిటర్లు విడదీయండి.
3. మారిపోవడం, పెళుసుదనం వంటి వేడెక్కడం యొక్క సంకేతాల కోసం స్వీచ్ చెరిందల్ని మరియు కనెక్టర్లను భోతికంగా పరిశీలిస్తుంది.

❖ చాలాసార్లు సమస్య ఒక దెబ్బతిన్న కీరిష్టమ్ ఉమ్మడి లేదా బలహీనమైన కనెక్టన్ కారణంగా కాలీపోయిన స్థిర్ కనెక్టర్ మాత్రమే. స్వీచ్ మంచి పని క్రమంలో ఉంచే, మరమ్మత్తు చెరిందల్ని పుభ్రపరచడం ద్వారా మరియు మండే కనెక్టర్ ప్రానంలో ఉంచవచ్చు. లేదా, కేవలం బూడిద కనెక్టర్లను కత్తిరించండి మరియు నేరుగా స్వీచ్ చెరిందల్ని తీగలు తీగలుగా కత్తిరించండి.

జాగ్రత్తగా జీను తోలగించు స్వీచ్ చెరిందల్ని నుండి దారితీస్తుంది. వాటిని అవసరమైతే వాటిని వదిలేయండి, కానీ చాలా శక్తిని పెంచుకోవద్దు, లేదా చెరిందల్ని స్వీచ్ నుండి కుడికి విరిగిపోవచ్చు.

❖ అనేక మోడల్లు ఒక లాకింగ్ క్లిప్ట్ కనెక్టర్లను రిస్టస్యూల్ చెరిందల్ మధ్యలో ఉపయోగిస్తాయి. చెరిందల్ నుండి కనెక్టర్లను శాంతముగా లాగడం ద్వారా ఈ ఎక్సాప్టింగ్ లివర్ డౌన్ ఒత్తిడి చేయాలి.

ఆర్ఎమ్ఎల్ 1 స్యూల్ వథ ఒంలు చదవటానికి DMM ని సెట్ చేయండి. COM చెరిందల్నై ఒక మీటర్ పోర్బ్ మరియు ఎన్ ఒలో ఇతర పోర్బ్. చెరిందల్. యాక్సాచ్యటర్ (లేదా లేవేర్, లేదా బటన్) నిరుత్సాహపరచకపోయినా, మీటర్ అనంతం (ఒపెన్ సర్క్యూట్) ను చదవాలి. మీటర్ పోర్బ్లను తరలించకుండా, "క్లిక్" వినే వరకు స్వీచ్ యాస్కేటల్నై నోక్కండి. క్లిక్ సమయంలో, మీటర్ సున్నా ఒమ్స్ (లేదా కొనసాగింపు) యొక్క పరసంకు స్వీంగ్ చేయాలి. ఒక ఆరోగ్యకరమైన "క్లిక్" సాధారణంగా స్వీచ్ సాధారణంగా పని అధం.

TRIACS

The triac is another three-terminal ac switch that is triggered into conduction when a low-energy signal is applied to its gate terminal. Unlike the SCR, the triac conducts in either direction when turned on. The triac also differs from the SCR in that either a positive or negative gate signal triggers it into conduction. Thus the triac is a three terminal, four layer bidirectional semiconductor device that controls ac power whereas an SCR controls dc power or forward biased half cycles of ac in a load. Because of its bidirectional conduction

property, the triac is widely used in the field of power electronics for control purposes. Triacs of 16 kW rating are readily available in the market.

“Triac” is an abbreviation for three terminal ac switch. ‘Tri’-indicates that the device has three terminals and ‘ac’ indicates that the device controls alternating current or can conduct in either direction. Considering the heavy job that the triac does, it’s not surprising that it is a common candidate for failure.

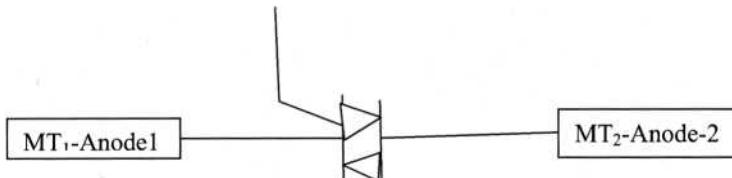
ఈ ట్రియాక్ అనేది మరొక మూడు-చెర్చినల్ ఆసి స్వీచ్, దాని గేట్ చెర్చినల్లుకు తక్కువ-శక్తి సిగ్నల్ వర్తించినపుడు ప్రసరణలో వేరేరేపించబడుతుంది. SCR మాదిరిగా కాకుండా, ట్రియాక్ అన్ దిశలో ఉన్నపుడు గాని దిశలో నిర్వహిస్తుంది. ఈ ట్రియల్ కూడా ఎస్.సి.ఆర్ నుండి భిన్నంగా ఉంటుంది, ఇందులో సానుకూల లేదా ప్రతికూల గేట్ సిగ్నల్ అది ప్రసరణలోకి వేరేరేపిస్తుంది. అందుచే ఈ ట్రియాక్ మూడు చెర్చినల్, నాలుగు పౌర ద్వాదిశాత్మక సెమికండక్షర్ పరికరాన్ని ఆసి శక్తిని నియంత్రిస్తుంది, అయితే ఒక SCR dc శక్తిని లేదా లోడ్ ఆసి యొక్క ముందుకు పక్కపాతంతో ఉన్న సగం చక్కరాలను నియంత్రిస్తుంది. దాని ద్వాదిశాత్మక conduction ఆస్తి కారణంగా, ట్రియాక్ నియంత్రణ ప్రయోజనాల కోసం విద్యుత్ ఎలక్ట్రానిక్స్ రంగంలో విస్మృతంగా ఉపయోగిస్తారు. 16 కిలోవాట్ రేటింగ్స్ ట్రియక్ ను మార్కెట్లో అందుబాటులో ఉన్నాయి.

“ట్రియాక్” అనేది మూడు చెర్చినల్ ఆసి స్వీచ్ కోసం సంక్లిష్ట రూపం. పరికరం ‘మూడు’ అనే మూడు చెర్చినల్ని ఉందని మరియు ‘ఎ’ అని సూచిస్తుంది, పరికరం ప్రస్తుత ప్రత్యామ్నాయం నియంత్రిస్తుంది లేదా ఎ దిశలోనూ నిర్వహించగలదని సూచిస్తుంది. టీరైక్ చేసిన భారీ పనిని పరిగణనలోకి తీసుకుంచే, వైఫల్యానికి ఇది సాధారణ అభ్యర్థి అని ఆశ్చర్యం లేదు.

Symbol of Triac

Testing the Triac:

<http://www.microtechfactoryservice.com/safety.html>- dischgTriacs with three terminals, such as most of those shown above, can be tested by making a series of resistance checks as follows.


<http://www.microtechfactoryservice.com/safety.html>- dischgTriacs,

మైన చూపించిన వాటిలో చాలా వరకు, చెర్చినల్ ఆల్ నిరోధక తనిఖీలను

అనుసరించడం ద్వారా పరీక్షించవచ్చు.

1. Resistance measurement between Terminals, Gate and Ground

- (i) Unplug the oven and open the same and locate the Triac.
- (ii) DISCHARGE THE HIGH VOLTAGE CAPACITOR as per specified procedures.
- (iii) Identify the terminals designated as G (gate), T1 and T2. (smallest terminal is the gate; medium sized is T1; largest is T2.)
- (iv) Carefully remove all harness leads. A soldered-in varistor or snubber may remain attached providing it's in good condition.
- (v) Set the DMM to a scale capable of reading LESS than 200 ohms.
- (vi) Take the reading from gate to T1, note the reading.
- (vii) It should be between 10 to 200 Ohms.
- (viii) Note the reading again by reversing the leads. It should again be between 10 to 200 Ohms.

(ix) Set the DMM to the highest resistance scale. Measure the resistance between: T1 & T2; T2 & Gate; and between each terminal and Chassis ground.

- (x) All the readings should be very high resistance or infinity or open circuit.
- (xi) Any deviation would mean the Triac is bad and should be replaced.

- (i) ఒవెన్న అన్నగ్ చేసి, దానిని తెరిచి ట్రియాక్కు గుర్తించండి.
- (ii) పేర్చిన్న విధానాల ప్రకారం హై ఒల్డ్జె కెపాసిటర్లు విస్కరించండి.
- (iii) G (గేట్), T1 మరియు T2 గా నియమించబడిన చెర్కులున్న గుర్తించండి.
(చిన్న పదం చెర్కునేట్ గేట్, మధ్యష పరిమాణం T1; అతిపెద్ద T2.)
- (iv) అన్న జీనులను జాగ్రత్తగా తీసివేయండి. ఒక soldered-in varistor లేదా snubber అది మంచి స్థితిలో అందించడం జోడించబడి ఉండవచ్చు.
- (v) డిఎంఎమ్ము ఒక ఫ్యాయిక్ 200 మెగాహెచ్ కంటే తక్కువగా చదవగలిగేలా చదవవచ్చు.
- (vi) గేట్ నుండి T1 కు చదివేటప్పుడు, పరసం గమనించండి.
- (vii) ఇది 10 నుండి 200 ఒమ్మ మధ్య ఉండాలి.

(viii) లీడింగ్ లను విడదీయడం ద్వారా మళ్ళీ చదవడాన్ని గమనించండి. ఇది మళ్ళీ III నుండి 200 ఓమ్స్ వరకు ఉండాలి.

(ix) DMM ని అత్యధిక ప్రతిఫుటన ప్రాయికి అమర్చండి. T1 & T2 మధ్య ప్రతిఫుటను కొలిచండి; T2 & గేట్; మరియు ప్రతి శెరిన్స్ మరియు చాసిస్ గీరోండ్ మధ్య.

(x) అన్ని రీడింగ్స్ అధిక నిరోధకత లేదా అనంతం లేదా ఒపెన్ సర్క్యూట్ ఉండాలి.

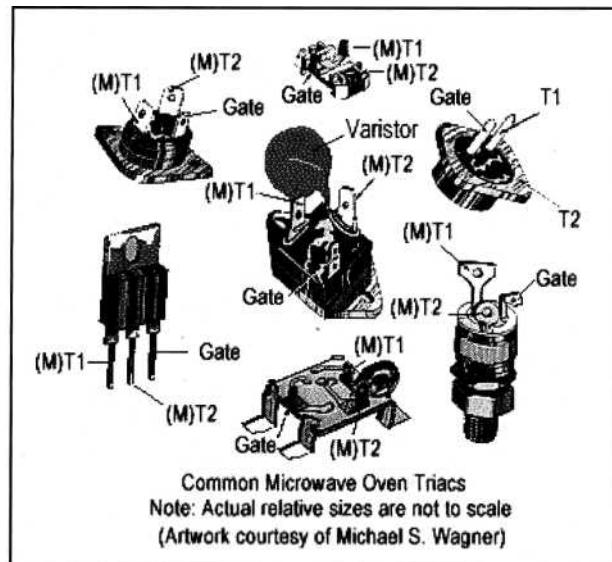
(xi) ఏ విచలనం ట్రియాక్ చెడ్జరని మరియు భర్తీ చేయాలి.

2. Evaluate its gate-firing capability:

- Unplug and open the oven.
- DISCHARGE THE HIGH VOLTAGE CAPACITOR as per specific procedures.
- Remove all harness leads. Set the meter to a scale capable of reading about 200 ohms.
- Attach the negative meter lead to T1 and the positive lead to T2 .
- Now, using a screwdriver blade, create a momentary short between T2 and the gate . This brief contact should turn the triac “on,” thus producing a meter reading of about 15 to 50 ohms.
- Next, disconnect one of the meter leads, then re-connect it. The meter should return to a reading of infinity .
- Finally, reverse the meter leads and repeat the tests. The results should be the same.
- Any abnormal tests would suggest a defective triac.
- Replace the defective triac.

2. దాని గేట్-షైరింగ్ సామర్థ్యాన్ని పరీక్షించండి:

- పొయిని తెరిచి, తెరవండి.
- నిర్దిష్ట విధానాల ప్రకారం షై ఒట్టేజి కెపాసిటర్లు నిర్దిష్టం చేయండి.
- అన్ని జీసులను తీసివేయము. 200 ohms గురించి చదవగలిగే సామర్థ్యం మీటర్లు సెట్ చేయండి.
- T1 కి ప్రతికూల మీటర్లు దారి తీస్తుంది మరియు T2 కు అనుకూలమైన దారి.


(v) ఇప్పుడు, ఒక స్రూడ్ రైవర్ బ్లేడ్‌ట్రీ ఉపయోగించి, T2 మరియు గేట్ మధ్య కొండి క్షణలను సృష్టించండి. ఈ క్షణప్రమేన పరిచయము టీరియాక్ "ఆన్," దీనితో 15 నుండి 50 బమ్మ చదవటానికి ఒక మీటరును ఉత్పత్తి చేస్తుంది.

(vi) తర్వాత, మీటర్ ఒకదానిని డిస్క్‌నెక్స్ చేసి, మళ్ళీ కనెక్ట్ చేయండి. మీటర్ అనంతం యొక్క పరసం తెరిగి ఉండాలి.

(vii) చివరగా, మీటర్ దారితీస్తుంది రివర్స్ మరియు పరీక్షలు పునరావృతం. ఫలితాలు ఒకే విధంగా ఉండాలి.

(viii) ఏదైనా అసాధారణ పరీక్షలు ఒక లోపభూయిష్ట టీరియాక్‌ను సూచిస్తాయి.

(ix) లోపభూయిష్ట టీరియాక్‌ను భర్తీ చేయండి.

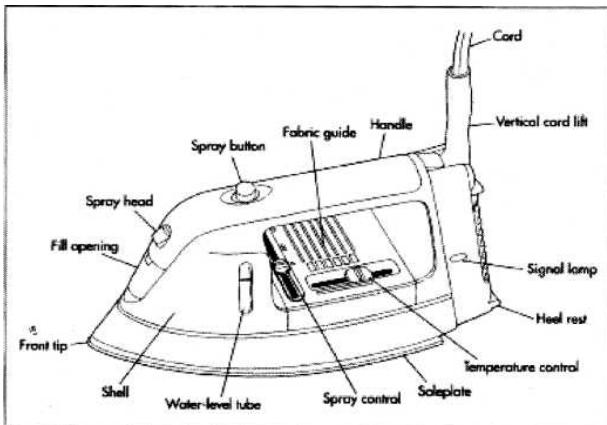
Electric Iron ఎలక్ట్రిక్ ఇరిం

PRINCIPLE OF ELECTRIC IRON, PARTS OF STEAM IRON, THERMOSTAT HEAT CONTROLS

ఎలక్ట్రిక్ IRON సూత్రం, ఆవిరి IRON ప్లాట్ట్,
THERMOSTAT HEAT CONTROLS

ELECTRIC IRON

Background


A clothes iron is a household appliance used to press the wrinkles out of and creases into clothes. When the iron is turned on, the consumer moves it over an item of clothing on an ironing board. The combination of heat and pressure removes wrinkles.

Most modern irons are made of metal and plastic, and have many features such as steam, temperature controls, and automatic shutoff. Steam provides an additional means for removing wrinkles from clothing.

నేపథ్య

బట్టల ఇనుము అనేది మురికిని బయటకు నొక్కటానికి మరియు బట్టలు లోకి ముదతలు చేయడానికి ఉపయోగించే గృహ ఉపకరణం. ఇనుము ఆన్ చేసినప్పుడు, వినియోగదారుడు ఇస్తే బోర్డులో దుస్తులను ఒక అంశం మీద కదిలిస్తుంది. వేడి మరియు పీడనం కలయిక ముదుతలను తోలిగిస్తుంది.

చాలా ఆధునిక కట్టలు లోహ మరియు ఫ్లాషిస్ట్ లతో తయారపుతాయి, మరియు ఆవిరి, ఉష్ణోగ్రత నియంత్రణలు, మరియు ఆటోమేటిక్ పోష్ట్ వంటి పలు లక్షణాలను కలిగి ఉంటాయి. ఆవిరి దుస్తులు నుండి ముదుతలను తోలిగించడానికి అదనపు మార్గాలను అందిస్తుంది.

Figure 12.1: Atypical clothes iron.

How Does a Steam Iron Work

ఎలా ఒక శ్లీమ్ ఐరన్ వర్క్ చేస్తుంది

FUNCTIONS OF STEAM IRON

- A steam iron removes wrinkles from just about any fabric by application of heat, steam and weight. Most steam irons come with a setting for fabrics such as silk, polyester, wool and delicate materials, cotton and linen. Tough materials require the use of higher temperature settings, while the more delicate fabrics are best ironed at low temperatures. The heat, steam and weight of the iron stretch out the molecules in the material of clothing or cloth. Steam is usually reserved for tougher materials to stretch (e.g., cotton and linen).

Heat and water resistance Sole Plate-

ఒక ఆవిరి ఇనుము వేడి, ఆవిరి మరియు బరువు యొక్క అనువర్తనం ద్వారా ఏడైనా ఫాబ్రిక్ నుండి ముడుతలను తోలగిస్తుంది. చాలా ఆవిరి ఐరన్లు పట్టు, పాలిష్టర్, ఉన్ని మరియు సున్నితమైన పదార్థాలు, పత్తి మరియు నార వంటి వస్తాల కొరకు వస్తాయి. అధిక ఉష్టోగ్రత సెట్టింగులను ఉపయోగించడం టఫ్ పదార్థాలకు అవసరమవుతుంది, అయితే మరింత సున్నితమైన బట్టలు తక్కువ ఉష్టోగ్రతల వద్ద ఉత్తమంగా ఉంటాయి. ఇనుము యొక్క వేడి, ఆవిరి మరియు బరువు దుస్తులు లేదా వస్తుం యొక్క పదార్థంలో అణువులను విస్తరించండి. ఆవిరి సాధారణంగా పటిష్టమైన పదార్థాలకు కత్తిరించడానికి (ఉదా., పత్తి మరియు నార) కోసం ప్రత్యేకించబడింది.

వేడి మరియు నీటి ప్రతిష్టంన సోల్ ఫ్లైట్-

- The metal plate on the iron, commonly referred to as a sole plate, is usually made with aluminum. This aluminum plate has been manufactured with a water resistance treatment to the metal. The steam is created by releasing water from the water tank to the heated plate. The water is run through pores in the sole plate so that the water can be applied in a manageable amount. The steamed water is vaporized immediately after it is released from the pores in the sole plate.

ఇనుముపై ఉన్న మెటల్ ఫ్లైట్ సాధారణంగా ఒకే ఫ్లైట్ సూచిస్తారు, సాధారణంగా అల్యూమినియంతో తయారు చేస్తారు. ఈ అల్యూమినియం ఫ్లైట్ లోహంతో నీటి నిరోధకతతో తయారు చేయబడింది. వాటర్ ట్యూంక్

నుండి వేడి ఫ్లైట్ వరకు నీటిని విడుదల చేయడం ద్వారా ఆవిరి సృష్టించబడుతుంది. నీరు ఒక పలకలో రంధ్రాల ద్వారా అమలు చేయబడుతుంది, తద్వారా నీరు నిర్వహించదగిన మొత్తంలో వాడవచ్చు. ఉల్లిపాయల నుంచి ఒక ఫ్లైట్ విడుదల చేసిన వెంటనే ఆవిరి నీరు ఆవిరి అవుతుంది.

Temperature Control of steam irons

- There is a thermostat embedded in the steam iron to ensure that a constant temperature will be produced when ironing any material. Users can set the appropriate temperature for ironing any material. Before ironing, simply select from a list of materials on the dial of the steam iron. The water tank has an indicator (or a see through plastic surface) for measuring the water level in the steam iron. When you're not sure about a setting for ironing a particular type of material, check the tag or flap on the product. Most clothes have a tag with instructions for washing, which includes the type of materials the clothes are made of.
- ఏదైనా పదార్థాలను ఐరన్ చేసేటప్పుడు స్థిరమైన ఉష్టిగ్రత్త ఉత్పత్తి చేయబడిందని నిర్దారించడానికి ఆవిరి ఇనుములో ఉన్న ఒక థర్మాషాట్ ఉంది. యూజర్లు ఏ పదార్థాన్ని ఇనుపడానికి సరైన ఉష్టిగ్రత్తని అమర్చవచ్చు. ఇస్తే చేయడానికి ముందు, ఆవిరి ఇనుము యొక్క ఉయల్లోని పదార్థాల జాబితా నుండి కేవలం ఎంచుకోండి. వాటర్ ట్యాంక్ ఆవిరి ఇనుములో నీటి పొయిని కోలిచే ఒక సూచిక (లేదా ఫ్లాష్మీక్ ఉపరితలం ద్వారా చూడండి) ఉంది. మీరు ఒక నిర్దిష్ట రకాన్ని ఇస్తే చేయడానికి ఒక సెట్టింగ్ గురించి ఖచ్చితంగా తెలియకపోతే, ఉత్పత్తిపై ట్యాగ్ లేదా పోప్పు తనిఖీ చేయండి. చాలా బట్టలు వాషింగ్ కోసం సూచనలు కలిగిన ట్యాగ్ కలిగి ఉంటాయి, వీటిలో పదార్థాల రకాన్ని తయారు చేసిన ప్రస్తాన్ని కలిగి ఉంటుంది.

Power

- Most steam irons come with an electrical power cord attached at the side or back end of the iron. The electrical power cord is made of a heat resistant insulation, which also prevents accidental electrocution. The electric power cord often comes with a built in spring that holds the cord away from the metal part of the steam iron for the operator's safety. Some steam irons have additional features. One grade of steam iron may come with an anti-burn control. The anti-burn control will shut off the power to the steam iron when it is left flat on an ironing board for too long. This prevents accidental fires.

There are other steam irons that are completely cordless. These latter types of steam irons have a limit to the amount of power they can use or work with. Cordless steam irons are best for light loads of clothing that needs to be ironed. Still, some of the cordless steam irons come

with a power saving feature. This power saving feature shuts off the power to the steam iron if it is left idle for a certain number of minutes. A sensor inside the steam iron's sole plate detects whether or not the sole plate is making contact with a material.

- చాలా ఆవిరి ఇరన్ల ఇనుము వైపు లేదా వెనుక భాగంలో జత చేయబడిన విద్యుత్ శక్తి తీరాడుతో వస్తాయి. ఎలెక్ట్రిక్ పవర్ తీరాడు ఉష్ణ నిరోధక ఇనుంలేపన్లో తయారు చేయబడుతుంది, ఇది ప్రమాదవశాత్తు విద్యుదయస్మాంతమును కూడా నిరోధిస్తుంది. విద్యుత్ శక్తి తీరాడు వసంత బుతువులో నిర్మితమైనది, దీని వలన ఆపరేటర్ యొక్క భద్రత కోసం ఆవిరి ఇనుము యొక్క మెటల్ భాగం నుండి తీరాడును కలిగి ఉంటుంది. కొన్ని ఆవిరి irons అదనపు లక్షణాలు కలిగి ఉంటాయి. ఒక గీరేడ్ ఆవిరి ఇనుము ఒక బర్న్ వ్యతిరేక నియంత్రణతో రావచ్చు. ఇనుప బల్లపై చాలా కాలం పాటు ఫ్లాట్ చేయబడినప్పుడు ఆరిన ఇంధన నియంత్రణ శక్తిని మూసివేస్తుంది. ఇది ప్రమాదవశాత్తు మంటలు నిరోధిస్తుంది. పూర్తిగా కార్బైన్ ఇతర ఆవిరి irons ఉన్నాయి. ఆవిరి ఇరన్స్ యొక్క తరువాతి రకాలు వారు ఉపయోగించగల లేదా పని చేసే శక్తిని పరిమితం చేస్తాయి. కార్బైన్ ఆవిరి ఐరన్లు ఉత్తమమైన లార్ లైట్ దుస్తులను ఇనుపతో చేయవలసి ఉంటుంది, అయినప్పటికీ, కొన్ని కార్బైన్ ఆవిరి ఐరన్లు వస్తాయి ఒక శక్తి పొదువు లక్షణంతో. ఇది కొన్ని నిమిషాల నిమిషానికి నిష్టియాత్మకంగా వదిలేస్తే ఆవిరి ఇనుముకు శక్తిని కోల్పోయే లక్షణం తెరపడుతుంది. ఆవిరి ఇనుము యొక్క ఎక్కు ఫ్లైట్ లోపల ఒక సెనార్ ఎక్కు పలక పదార్ధంతో సంబంధం కలిగిస్తుందో లేదో గుర్తించింది.

WHAT CAN GO WRONG WITH AN ELECTRIC IRON?

There is very little inside a well-made iron that can go wrong. Most repairs are for faulty cords, damaged handles, and mineral deposits that hamper steam irons. Problems with an iron's electronic complements should be dealt with by an authorized service center. It typically is more cost effective to replace rather than repair an iron with internal problems. Check the owner's manual for your iron to learn the manufacturer's suggestions for cleaning, what water to use, and storage tips.

Soft-water systems add minerals that can harm an electric steam iron and your clothes so don't fill the iron with softened water. Instead, use filtered or distilled water.

బాగా తయారు చేయబడిన ఇనుము లోపల చాలా తక్కువగా ఉంది, అది తప్ప కావచ్చు. చాలా మరమ్మతులు తప్పుడు కణవులు, దెబ్బతిన్న హ్యాండిల్స్ మరియు ఖనిజ నిల్వలను ఆవిరి ఆతుకులను దెబ్బతీస్తున్నాయి. ఒక ఇనుము యొక్క ఎలక్ట్రానిక్ పూర్కాలతో సమస్యలు అధికర్త సేవా కేంద్రాన్ని నిర్వహించవలెను. అంతర్ధత సమస్యలతో ఇనుప రిపేర్ కాకుండా, బదులుగా ఇది మరింత ఖర్చుతో కూడుకున్నది. శుభ్రం చేయడానికి తయారీదారు సలహాలను తెలుసుకోవడానికి, ఏ నీటిని ఉపయోగించాలో మరియు నిల్వ చిట్టులను తెలుసుకోవడానికి మీ ఇనుము కోసం యజమాని యొక్క మాన్యవల్యు తనిఖీ చేయండి.

మృదు నీటి వ్యవస్థలు ఎలక్ట్రిక్ అవిరి ఇనుముకు హోని కలిగించే ఖనిజాలను మరియు మీ బట్టలను ఇనుముతో మెత్తగా నీటితో నింపకు. బదులుగా, ఫిల్టర్ లేదా స్వీచ్ నజలం వాడండి.

HOW CAN I IDENTIFY AN ELECTRIC IRON PROBLEM?

As with many small appliances, regular maintenance makes a dramatic difference in how trouble free your electric iron will be. Even so, things can happen.

- If the iron doesn't heat, make sure power is on to the outlet, check the electrical cord, and check the thermostat (see the Appliance Controls Fix-It Guide) and replace if necessary.
- If the iron heats but steams improperly, inspect the soleplate and clean the vents (see below) and flush sediment out of the steam chamber (see below).
- If the iron produces too much or too little heat, test the electrical cord. Also test and, if needed, adjust calibration of the thermostat (see the Appliance Controls Fix-It Guide).

- If the iron does not spray properly, inspect and clean the nozzle (see below).
- If the iron leaks or spits, clean the steam vents, nozzle, and tank.
- If the iron sticks to fabric, clean or repair the soleplate. If the iron stains fabric, clean the soleplate, clean the tank with a commercial cleaner, and use distilled or filtered water.

అనేక చిన్న ఉపకరణాల మాదిరిగా, మీ ఎలక్ట్రానిక్ ఇనుము ఎంత ఇబ్బందికరమైన ఇబ్బందులను ఎదుర్కొంటుండే ఒక నాటకీయ వ్యత్యాసాన్ని సాధారణ నిర్వహణ చేస్తుంది. అయినప్పటికీ, విషయాలు జరగవచ్చు.

- ఇనుము వేడి చేయనట్లయితే, విద్యుత్ శక్తిని వెలుపలికి తీసుకెళ్ళండి, విద్యుత్ తీరాడును తనిటీ చేసి, థర్మప్లాట్ను తనిటీ చేయండి (ఉపకరణపత్ర నియంత్రణలను ఫిక్స్-ఇట్ గైడ్ చూడండి) మరియు అవసరమైతే భర్తీ చేయండి.
- ఇనుము వేడెక్కుతుంది, కానీ ఆవిరిని సరిగ్గా జరపకషాతే, ఒకే ప్లాట్టారమ్ము తనిటీ చేసి, రంధ్రాలను శుభ్రపరుస్తుంది (కీరింద చూడండి) మరియు ఆవిరి చాంబర్ నుండి బయటపడటం (కీరింద చూడండి).

ఇనుము చాలా ఎక్కువ లేదా చాలా తక్కువ వేడిని ఉత్పత్తి చేస్తే, విద్యుత్ తీరాడును పరీక్షించండి. కూడా పరీక్ష మరియు, అవసరమైతే, థర్మప్లాట్ యొక్క అమరికను సర్పుబాటు చేయండి (ఉపకరణాల నియంత్రణలు ఫిక్స్-ఇట్ గైడ్ చూడండి).

- ఇనుము సరిగ్గా స్నేహ చేయకషాతే, దర్శనిని పరిశీలిస్తుంది మరియు ముక్కు శుభ్రం చేయాలి (కీరింద చూడండి).
- ఐరన్ సీరావాలు లేదా స్పిట్స్ ఉంచే, ఆవిరి గుంటలు, ముక్కు, మరియు ట్యూంక్ శుభ్రం.
- ఐరన్ ఫ్యాబ్రిక్ కు అంటుకుని ఉంచే, శుభ్రంగా లేదా శుభ్రపరుస్తుంది. ఐరన్ షైన్స్ ఫ్యాబ్రిక్ ఉంచే, ఒకే ప్లాట్టారమ్ము శుభ్రపరిచ్చనట్లయితే, ట్యూంకున్న ఒక వాణిజ్య క్లీనర్లో శుభ్రపరుస్తుంది మరియు స్వేదనం లేదా ఫిల్టర్ చేసిన నీటిని ఉపయోగించాలి.

Caution!

Iron carefully around buttons, zippers, and other attachments or decorations that can scratch the soleplate.

WHAT DO I NEED FOR ELECTRIC IRON REPAIR?

Larger hardware stores may have replacement parts for popular brand electric irons. Also, you can get them from the manufacturer or an aftermarket supplier. Maintenance and repair tools you'll need to fix an electric iron include these:

- Screwdrivers
- Toothpicks or pipe cleaners
- Sewing needle
- Commercial electric iron cleaning solution or vinegar and water
- Commercial soleplate cleaner or baking soda and water
- Steel wool
- Emery cloth
- Metal cooking pot

పెద్ద హోర్స్‌రూ ప్రముఖ బెరాండ్ ఎలక్ట్రిక్ ఐరోన్ కోసం భాగాలను కలిగి ఉండవచ్చు. కూడా, మీరు వాటిని తయారీదారు లేదా ఒక అనంతర సరఫరాదారు నుండి పొందవచ్చు. నిర్వహణ

• మరియు మరమ్మతు టూల్స్ మీరు ఒక ఎలక్ట్రిక్ ఇన్సుము పరిష్కరించడానికి అవసరం ఈ ఉన్నాయి:

- Screwdrivers
- టూల్పిన్స్ లేదా పైప్ క్లీప్స్ నర్లు
- కుట్టు సూది
- వాటిజ్య విద్యుత్ ఇన్సుము శుద్ధపరచడం పరిష్కారం లేదా వెనిగర్ మరియు నీరు
- కమర్సియల్ soleplate క్లీస్ నర్లు లేదా బేకింగ్ సోడా మరియు నీరు
- ఉక్కు ఉన్ని
- ఎమీ విస్త్రం
- మెటల్ వంట పాట్

WHAT ARE THE STEPS TO ELECTRIC IRON REPAIR?

Access the internal parts of an electric iron by removing the rear cover panel. Some irons have unique fasteners to keep you from opening them. Check with your local hardware store

for an appropriate screwdriver.

వెనుక కవర్ ప్యానెల్యూ తొలగించడం ద్వారా ఎలాక్షీక్ ఇనుము యొక్క అంతర్గత భాగాలను ప్రాప్యత చేయండి. కొన్ని ఐరస్సు మీకు ప్రత్యేక తెరువులు కలిగి ఉంటాయి. తగిన ప్రూట్‌లైవర్ కోసం మీ ప్లానిక హ్యోర్స్ ఫోర్ము తనిఖీ చేయండి.

Clean an electric iron:

1. Unplug the iron and make sure it is cool before cleaning.
2. Use a toothpick or pipe cleaner to remove buildup in the steam vents, making sure the debris doesn't fall into the vents.
3. Use a fine sewing needle to carefully clean the spray nozzle of mineral deposits.
4. To flush sediment from a steam iron, pour 1/2 cup water and 1/2 cup vinegar into the water tank. Place the iron on a rack over a broiling pan and set the iron to steam until the tank runs dry. Repeat if necessary. Or follow the instructions for using a commercial iron cleaner.

1. ఇనుప రంధ్రం మరియు శుభ్రపరిచే ముందు చల్లగా ఉందని నిర్ధారించుకోండి. 2. ఆవిరి రంధ్రాలపై నిర్మించటానికి ఒక టూత్ప్రీక్ లేదా పైవ్ క్లీనర్సు ఉపయోగించండి, శిధిలాలు గుంటలలోకి రావు.

3. ఖనిజ నిక్షేపాల యొక్క ప్రేస్ ముక్కును జాగ్రత్తగా శుభ్రం చేయడానికి ఒక మంచి కుట్టు సూదిని ఉపయోగించండి.

4. ఒక ఆవిరి ఇనుము నుండి అవక్షేపణను ప్రవహించుటకు, 1/2 కప్పు నీరు మరియు 1/2 కప్ వెనీగర్సు నీటి ట్యూంకులోకి పోయాలి. ఒక బెరీటింగ్ పాన్ మీద ఒక ఇత్తడి మీద ఇనుము ఉంచండి మరియు ట్యూంక్ పొడిగా ఉంటుంది వరకు ఆవిరిని ఆవిరికి ఉంచండి. అవసరమైతే పునరావృతం చేయండి. లేదా ఒక వాణిజ్య ఐరస్ క్లీనర్సు ఉపయోగించే సూచనలను అనుసరించండి.

Service an electric iron steam and spray mechanism:

1. Unplug the iron.
2. Use a fine sewing needle to unclog the steam valve assembly. Also, check the valve spring and replace it if it is broken or has lost tension.
3. If the spray pump is accessible, remove it and check for leaks by placing the spray tube in water and squirting the pump. Clean or replace as needed.

1. ఐరన్ ను అన్విగ్.
2. ఆవిరి వాల్వ్ అసెంబ్లీ unclog కు జరిమానా కుట్టు సూది ఉపయోగించండి. కూడా, వాల్వ్ వసంత తనిఫీ మరియు అది విచ్చిన్నం లేదా ఒత్తిడి కోల్పోయింది ఉంచే అది భర్తి.
3. పిచికారీ పంపు అందుబాటులో ఉంచే, దాన్ని తోలగించి, నీటిలో స్నేహిట్లు ఉంచడం ద్వారా మరియు పంపు చల్లడం ద్వారా లీక్ కోసం తనిఫీ చేయండి. అవసరమైతే శుభ్రం లేదా భర్తి చేయండి.

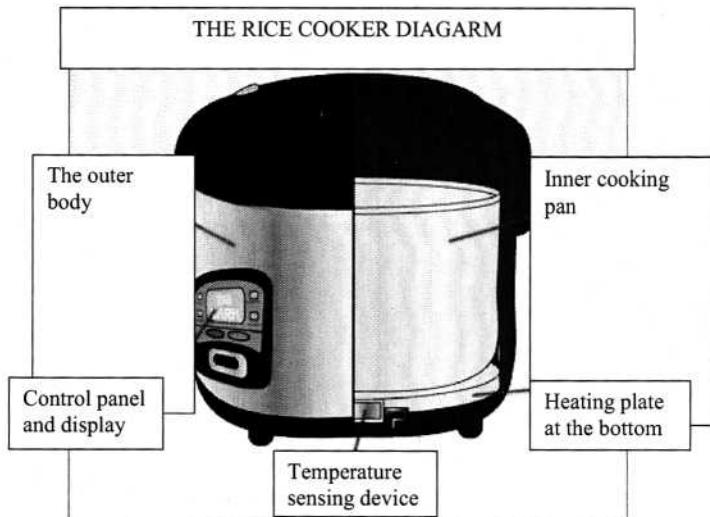
Clean an electric iron metal soleplate:

1. Unplug the iron.
2. Use a sponge and commercial soleplate cleaner or baking soda and water to remove dirt buildup on the soleplate. Rinse well with water and dry. Don't use harsh abrasives or immerse an electric iron in water.
3. Use very fine steel wool (0000) or an emery cloth to remove scratches and burns on the soleplate, then clean the soleplate.

1. ఐరన్ ను అన్విగ్.
2. ఒక నారింజ మరియు వాణిజ్యపరమైన soleplate క్లీనర్ లేదా బేకింగ్ సోడా మరియు నీరు ఉపయోగించండి. నీటితో మరియు పొడిగా బాగా శుభ్రం చేయండి. కరినమైన అబర్సానీఫ్లన్ ను ఉపయోగించకండి లేదా నీటిలో ఒక ఎలక్ట్రిక్ ఇనుము ముంచకూడదు.
3. చాలా ముదువైన ఉక్క ఉన్ని (0000) లేదా ఒక తెల్లటి వస్తుం ఉపయోగించండి.

Troubleshooting Tip

Unless the instructions with your iron say it's okay, don't let water stand in your steam iron between uses. Drain all water from the iron, wrap the cord loosely around the handle, and store the iron in an upright position.


ట్రుబుల్ మాటింగ్ చిట్టాగు

మీ ఇనుముతో ఉన్న సూచనలను సరే చెప్పునట్టయితే, మీ ఆవిరి ఇనుములో నీటిని నిలబెట్టుకోవద్దు. ఇనుము నుండి అన్ని నీటిని ప్రవహిస్తుంది, హ్యాండిల్ చుట్టూ వదులుగా తీరాడు, మరియు ఒక నిటారుగా షానం లో ఇనుము నిలవ్.

Rice Cooker రైస్ కుక్కర్

Principle of working of rice cooker. Various parts & functions of rice cooker, temperature control and timer unit.

చియ్యం కుక్కర్ యొక్క పని యొక్క సూటితం. చియ్యం కుక్కర్, ఉష్టోగ్రత నియంత్రణ మరియు శైమర్ యూనిట్ యొక్క వివిధ భాగాలు & విధులు.

RICE COOKER BASICS

Cooking rice happens in four phases:

1. Start of Heating
2. Boiling'
3. Steaming
4. Resting

Rice cookers automatically guide rice through these four stages. The appliance consists primarily of a **outer body**, an **inner cooking pan**, an **electric heating plate at the bottom**, a **heat-sensing device** and some switches in various forms including buttons.

Water and rice sit inside the cooking pan while it's inserted into the rice cooker's shell. The pan's weight depresses the thermal-sensing device, and the heating plate quickly brings the water to a boil. The sensing device is a small, spring-loaded thermometer that gauges the temperature of the pan's contents. It's set into the bottom of the rice cooker's main body.

Simple rice cookers usually warm their contents by transferring heat from the heating

plate to the cooking pan, and the type of metal used can improve that transfer. Some metals — copper and aluminum for example — are highly **conductive**. In other words, they transfer their heat easily. A wide range of materials can be used for the cooking pan, and each type may affect the overall time it takes to cook the food.

The process for cooking the rice is simple. Water boils at 100 degrees Celsius, and once it reaches a steady boil, it won't get hotter. As long as there is water in the pan, the temperature should be stable. Once the rice absorbs all the water in the pan, the temperature will start to rise. The rice cooker senses this change and will either switch off or switch to a warming cycle. At this point, the rice has finished cooking and entered the resting stage.

అలీస్ కుక్కర్ బేసిక్స్

వంట అన్నం నాలుగు దశల్లో జరుగుతుంది:

తాపన పేరారంభం

2. Boiling' -

3. శ్వమింగ్

4. రెష్టింగ్

క్రైస్ కుక్కర్ ఈ నాలుగు దశల ద్వారా బియ్యంను నేరుగా వారీగా మాధదర్శిస్తాయి. ఉపకరణం పీరాథమికంగా బాహ్య శరీరాన్ని కలిగి ఉంటుంది, అంతర్భత వంట పాన్, ఒక ఎలక్ట్రిక్ హీట్ ఫ్లైట్ దిగువన, ఒక వేడి-సెనింగ్ పరికరం మరియు కొన్ని రకాల స్విచ్చు బట్టన్లతో సహా.

వంట పాన్ లోపల నీరు మరియు బియ్యం కూర్చుని అది బియ్యం కుక్కర్ లో చేర్చబడుతుంది. పాన్ యొక్క బరువు ధర్మల్ సెనింగ్ పరికరాన్ని నిరుత్సాహపరుస్తుంది మరియు తాపన ఫ్లైట్ త్వరితంగా నీటిని ఒక మరుగుకి తెస్తుంది. సెనింగ్ పరికరం ఒక చిన్న, స్టేట్-లోడ్ చేసిన ధర్మమీటర్, ఇది ప్యాన్ యొక్క విషయాల ఉప్పోగ్రథ యొక్క పోయిని సూచిస్తుంది. ఇది బియ్యం కుక్కర్ యొక్క ప్రధాన శరీర భాగంలోకి సెట్ చేయబడింది.

సాధారణ బియ్యం కుక్కర్ వేడిచేసిన ఫ్లైట్ నుండి వంట పాన్ కు వేడిని బదిలీ చేయడం ద్వారా వాటి కంచెంట్లను వేడిచేస్తాయి మరియు ఉపయోగించిన లోహం రకం ఆ బదిలీని మెరుగుపరుస్తాయి. కొన్ని లోహాలు - ఉడాహరణకు రాగి మరియు అల్యామినియం - అత్యంత వాహకం. ఇతర మాటలలో, వారు నులభంగా వారి వేడిని బదిలీ చేస్తారు. వంటకాల పాన్ కోసం అనేక రకాల పదార్థాలను

ఉపయోగించవచ్చు, మరియు ప్రతి రకం ఆఫ్రాన్స్ ఉడికించడానికి అవసరమైన మొత్తం సమయాన్ని ప్రభావితం చేయవచ్చు.

ఖియం వంట కోసం ప్రక్రియ సులభం. నీరు 100 డిగ్రీల సెల్పియన్ వద్ద దిమ్మలు, మరియు ఒక ప్లిరమైన వేసి చేరుకున్న తర్వాత, అది వేడిగా ఉండదు. పాస్ట్ నీరు ఉన్నంత వరకు, ఉష్టగ్రత ప్లిరంగా ఉండాలి. పాస్ట్ ఉన్న అన్న నీటిని ఖియం గ్రహిస్తే, ఉష్టగ్రత పెరుగుతుంది. ఖియం కుక్కర ఈ మార్పును సెన్సెన్ చేస్తుంది మరియు ఒక మార్చే చుక్కంకు మారడం లేదా మారడం జరుగుతుంది. ఈ సమయంలో, ఖియం వంట పూర్తి మరియు విశీరాంతి వేదిక ప్రవేశించింది.

Repairing the Rice cooker

Figure 13.1: Rice cooker with base opened

Step 1: Unplug Power Cord from Wall

Before you start to work on the electric rice cooker you will want to make sure it is not plugged into any power source.

Step 2: Remove Cover

Take the covering dish of the electric rice cooker and place it aside. You will also need to remove the burner plate and inner bowl. This will allow you to get to the internal parts of the cooker.

Step 3: Remove Base of Cooker

On the bottom of most electric rice cookers there are some tabs, or screws, that hold the base together. Remove these screws, or fold back the tabs, so that you can remove the base.

Step 4: Test Heating Element

The cooker's heating element may not be working properly. Disconnect the heating wire from the terminal and test it with the multimeter. Set the meter to read Ohms and touch the wire to the terminals. If it reads "0" ohms the wire is fine.

Step 5: Test Resistor

If the heating element is fine, then the next space to test is the resistor. Use the multimeter again on the same setting and touch the probes to the resistor. If the reading comes out to 20 Ohms then the resistor is fine. If not, then you will need to replace it.

షష్ఠీ అన్నాగ్ పవర్ పవర్ కార్బ్ ప్రెమ్ వాల్ మీరు ఎలెక్ట్రిక్ బియ్యం కుక్కర్లో పనిచేయడానికి ముందు మీరు ఇల్ || ఏ పవర్ సోర్స్ ను పడతారు నిర్మారించుకోవాలి. దశ 2: కవర్ తీసివేయి ఎలెక్ట్రిక్ బియ్యం కుక్కర్ యొక్క కప్పు తీసుకోండి మరియు దాన్ని పక్కన పెట్టండి. మీరు బర్బర్ ఫ్లేట్ మరియు లోపలి గిన్నెలను కూడా తీలగించాలి. ఇచ్చిన మీరు కుక్కర్ యొక్క IIIIH భాగాలను పొందటానికి అనుమతిస్తుంది. దశ 3: కుక్కర్ యొక్క పొరాన్ని తోలగించండి చాలా విధ్యుత్ బియ్యం కుక్కర్ దిగువన కొన్ని ఆధారాలు ఉన్నాయి, లేదా కలిసి ఆధారం కలిగి మరలు. ఈ స్క్రూలను తీసివేయండి లేదా టాభును తిరిగి భాగాన చేయండి, తద్వారా మీరు బెస్టు తీసివేయవచ్చు. దశ 4: ఆప్టి తాపన ఎలిమెంట్ కుక్కర్ యొక్క వేడి మూలకం సరిగా పనిచేయకపోవచ్చు. ఆర్టిసన్లు నుండి వేడి వైర్లు డిస్కునెక్ట్ చేసి, మల్టీమీటర్లో పరీక్షించండి. ఒఫ్సును చదివడానికి మీటర్లు సెట్ చేసి ఆర్టిసన్లుగు వైర్లు తాకండి. ఇది "0" ఒఫ్సు చదివే ఉంచే వైర్ మంచిది. దశ 5: చెప్పి నిరీధకం తాపన మూలకం ఉత్తమంగా ఉంచే, పరీక్షించడానికి తదుపరి ష్లం మండలం. అదే అమరికలో మల్టీమీటర్లు మల్టీ ఉపయోగించుము మరియు వేరొసెలను ముందరికి తాకేము. పరనం 20 ఒఫ్సు వరకు బయటకు వచ్చినట్టయతే అప్పుడు నిరీధకం ఉత్తమంగా ఉంటుంది. లేకపోతే, అప్పుడు మీరు దాన్ని భర్తీ చేయాలి.

Step 6: Check and Clean Contacts

Another problem that is associated with older electric rice cooker appliances is that the switch contacts can become dirty or corrode. When this happens they will not allow a solid current to flow when the switch is pressed to start the cooker. With the base removed, check the contact areas. Check to see if they are burned. If so, you will need to replace these contacts. If not, then use some electrical contact cleaner and a clean rag.

దశ 6: కాంటాక్ట్స్ తనిఖీ మరియు ఫీన్ పాత ఎలెక్ట్రిక్ బియ్యం కుక్కర్ ఉపకరణాలతో సంబంధం ఉన్న మరో సమస్య, స్వీచ్ పరిచయాలు మురికిగా లేదా కరీధా మారగలవు. ఇది జరిగేటప్పుడు వారు కుక్కర్ నడిపేందుకు స్వీచ్ నోక్కినప్పుడు ఘన కరంట్ ప్రవాహాన్ని అనుమతించరు. బేస్ తోలగించబడి, సంప్రదింపు ప్రాంతాలను తనిఖీ చేయండి. వారు బూడిద చేయబడతారో లేదో తనిఖీ చేయండి. అలా అయితే, మీరు

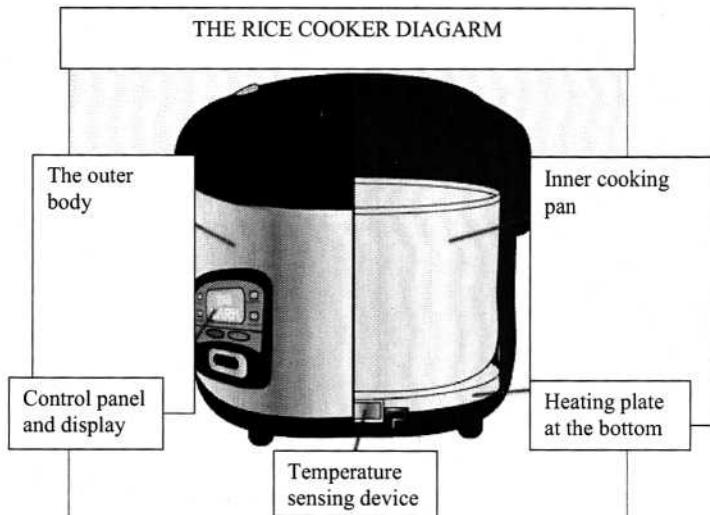
ఈ పరిచయాలను భర్తీ చేయాలి. లేకపోతే, అప్పుడు కొన్ని విద్యుత్ పరిచయం క్లింగ్ మరియు ఒక క్లింగ్ రాగ్ ఉపయోగించండి.

Step 7: Move Contacts

If you notice that the contacts are not touching when you press the switch, you can fix this by using a small screwdriver and moving the contact closer to the switch.

దశ 7: పరిచయాలను తరలించండి మీరు స్విచ్ నోక్కినప్పుడు పరిచయాలను తాకడం లేదని మీరు గమనించినట్లయితే, మీరు చిన్న ప్రూడ్రెవర్యు ఉపయోగించి మరియు స్విచ్కు దగ్గరగా ఉన్న పరిచయాన్ని కదిలించడం ద్వారా దీనిని పరిషురించవచ్చు.

Step 8: Replace Components


With the inside pieces either replaced, or cleaned, you can put the electric rice cooker back together. Make sure that the power cord is not pinched and that all wires are put back into their original position. Screw the base back on and replace the bowl and cover. Make a batch of rice to make sure it works correctly.

దశ 8: భాగాలు పునఃష్టాపించుచు లోపల ముక్కలు గాని భర్తీ, లేదా శుభం, మీరు కలిసి తెరిగి విద్యుత్ బియ్యం కుక్కర్ ఉంచవచ్చు. పవర్ తీరాడు పించ్ చేయబడలేదని మరియు అన్న తీగలు వారి అసలు షానానికి తెరిగి వస్తాయని నిర్ధారించుకోండి. తెరిగి బేస్ మేకు మరియు గిన్నె మరియు కవర్ షానంలో. ఇది సరిగ్గా పనిచేస్తుందని నిర్ధారించడానికి బియ్యం బ్యాచ్చి తయారు చేయండి.

Rice Cooker రైస్ కుక్కర్

Principle of working of rice cooker. Various parts & functions of rice cooker, temperature control and timer unit.

చియ్యం కుక్కర్ యొక్క పని యొక్క సూత్రం. చియ్యం కుక్కర్, ఉష్టోగ్రత నియంత్రణ మరియు శైమర్ యూనిట్ యొక్క వివిధ భాగాలు & విధులు.

RICE COOKER BASICS

Cooking rice happens in four phases:

1. Start of Heating
2. Boiling'
3. Steaming
4. Resting

Rice cookers automatically guide rice through these four stages. The appliance consists primarily of a **outer body**, an **inner cooking pan**, an **electric heating plate at the bottom**, a **heat-sensing device** and some switches in various forms including buttons.

Water and rice sit inside the cooking pan while it's inserted into the rice cooker's shell. The pan's weight depresses the thermal-sensing device, and the heating plate quickly brings the water to a boil. The sensing device is a small, spring-loaded thermometer that gauges the temperature of the pan's contents. It's set into the bottom of the rice cooker's main body.

Simple rice cookers usually warm their contents by transferring heat from the heating

plate to the cooking pan, and the type of metal used can improve that transfer. Some metals — copper and aluminum for example — are highly **conductive**. In other words, they transfer their heat easily. A wide range of materials can be used for the cooking pan, and each type may affect the overall time it takes to cook the food.

The process for cooking the rice is simple. Water boils at 100 degrees Celsius, and once it reaches a steady boil, it won't get hotter. As long as there is water in the pan, the temperature should be stable. Once the rice absorbs all the water in the pan, the temperature will start to rise. The rice cooker senses this change and will either switch off or switch to a warming cycle. At this point, the rice has finished cooking and entered the resting stage.

అలీస్ కుక్కర్ బేసిక్స్

వంట అన్నం నాలుగు దశల్లో జరుగుతుంది:

తాపన వీరారంభం

2. Boiling' -

3. శ్విమింగ్

4. రెష్టింగ్

రైస్ కుక్కర్ ఈ నాలుగు దశల ద్వారా బియ్యంను నేరుగా వారీగా మార్ధదర్శిస్తాయి. ఉపకరణం వీరాధమికంగా బహ్య శరీరాన్ని కలిగి ఉంటుంది, అంతర్ధత వంట పాన్, ఒక ఎలక్ట్రిక్ హీట్ ఫ్లైట్ దిగువన, ఒక వేడి-సెనిగ్స్ పరికరం మరియు కొన్ని రకాల స్విచ్చు బట్టన్తో సహా.

వంట పాన్ లోపల నీరు మరియు బియ్యం కూర్చుని అది బియ్యం కుక్కర్ షెల్ లో చేర్చబడుతుంది. పాన్ యొక్క బరువు థర్మల్ సెనిగ్స్ పరికరాన్ని నిరుత్సాహపరుస్తుంది మరియు తాపన ఫ్లైట్ త్వరితంగా నీటిని ఒక మరుగుకి తెస్తుంది. సెనిగ్స్ పరికరం ఒక చిన్న, స్ప్రెడ్-లోడ్ చేసిన థర్మామీటర్, ఇది ప్యాన్ యొక్క విషయాల ఉష్టోగ్రత యొక్క ఫోయిని సూచిస్తుంది. ఇది బియ్యం కుక్కర్ యొక్క ప్రధాన శరీర భాగంలోకి సెట్ చేయబడింది.

సాధారణ బియ్యం కుక్కర్ వేడిచేసిన ఫ్లైట్ నుండి వంట పాన్ కు వేడిని బదిలీ చేయడం ద్వారా వాటి కంచెంట్లను వేడిచేస్తాయి మరియు ఉపయోగించిన లోహం రకం ఆ బదిలీని మెరుగుపరుస్తాయి. కొన్ని లోహాలు - ఉదాహరణకు రాగి మరియు అల్యూమినియం - అత్యంత వాహకం. ఇతర మాటలలో, వారు నులభంగా వారి వేడిని బదిలీ చేస్తారు. వంటకాల పాన్ కోసం అనేక రకాల పదార్థాలను ఉపయోగించవచ్చు, మరియు ప్రతి రకం ఆహారాన్ని ఉడికించడానికి అవసరమైన మొత్తం సమయాన్ని ప్రభావితం చేయవచ్చు.

బియ్యం వంట కోసం ప్ర్టెరియ సులభం. నీరు 100 డిగ్రీల సెల్పియన్ వద్ద దిమ్మలు, మరియు ఒక స్థిరమైన వేసి చేరుకున్న తర్వాత, అది వేడిగా ఉండదు. పాట్లో నీరు ఉన్నంత వరకు, ఉష్టోగ్రత స్థిరంగా ఉండాలి. పాట్లో ఉన్న అన్ని నీటిని బియ్యం గ్రహిస్తే, ఉష్టోగ్రత పెరుగుతుంది. బియ్యం కుక్కర్ ఈ మార్పును సెన్సెన్ చేస్తుంది మరియు ఒక మారే చుక్రంకు మారడం లేదా మారడం జరుగుతుంది. ఈ సమయంలో, బియ్యం వంట పూర్తి మరియు విశీరాంతి వేదిక ప్రవేశించింది.

Repairing the Rice cooker

Figure 13.1: Rice cooker with base opened

Step 1: Unplug Power Cord from Wall

Before you start to work on the electric rice cooker you will want to make sure it is not plugged into any power source.

Step 2: Remove Cover

Take the covering dish of the electric rice cooker and place it aside. You will also need to remove the burner plate and inner bowl. This will allow you to get to the internal parts of the cooker.

Step 3: Remove Base of Cooker

On the bottom of most electric rice cookers there are some tabs, or screws, that hold the base together. Remove these screws, or fold back the tabs, so that you can remove the base.

Step 4: Test Heating Element

The cooker's heating element may not be working properly. Disconnect the heating wire from the terminal and test it with the multimeter. Set the meter to read Ohms and touch the wire to the terminals. If it reads "0" ohms the wire is fine.

Step 5: Test Resistor

If the heating element is fine, then the next space to test is the resistor. Use the multimeter again on the same setting and touch the probes to the resistor. If the reading comes out to 20 Ohms then the resistor is fine. If not, then you will need to replace it.

శ్రీ అన్నగ్ పవర్ పవర్ కార్బ్ ఫ్రెమ్ వాల్ మీరు ఎలెక్ట్రిక్ బియ్యం కుక్కల్లో పనిచేయడానికి ముందు మీరు ఇల్ || ఏ పవర్ సోర్ట్ పడలేదని నిర్మారించుకోవాలి. రశ 2: కవర్ తీసివేయు ఎలెక్ట్రిక్ బియ్యం కుక్కర్ యొక్క కప్పు తీసుకోండి మరియు దాన్ని పక్కన పెట్టండి. మీరు బర్బర్ ఫ్యూట్ మరియు లోపలి గిన్నెలను కూడా

తోలగించాలి. ఇబిన్ మీరు కుక్కర్ యొక్క ॥॥॥ఒ భాగాలను పొందటానికి అనుమతిస్తుంది. దశ 3: కుక్కర్ యొక్క పోవరాన్ని తోలగించండి చాలా విద్యుత్ బియ్యం కుక్కర్ దిగువన కొన్ని ఆధారాలు ఉన్నాయి, లేదా కలిసి ఆధారం కలిగి మరలు. ఈ ప్రూగులను తీసివేయండి లేదా టాఖును తెరిగి భాగాన చేయండి, తద్వారా మీరు బేస్సు తీసివేయవచ్చు. దశ 4: చెప్పు తాపన ఎలిమెంట్ కుక్కర్ యొక్క వేటి మూలకం సరిగా పనిచేయకపోవచ్చు. చెర్కెనల్ నుండి వేడి వైర్లు డిస్కునెక్స్ చేసి, మల్టీమీలర్ పరీక్షించండి. ఒప్పును చదవడానికి మీటర్లు సెట్ చేసి చెర్కెనలున్క వైర్లు తాకండి. ఇది "0" ఒమ్మ చదివే ఉంచే వైర్ మంచిది. దశ 5: చెప్పు నిరోధకం తాపన మూలకం ఉత్తమంగా ఉంచే, పరీక్షించడానికి తదుపరి ప్లలం మండలం. అదే అమరికలో మల్టీమీలర్లు మళ్ళీ ఉపయోగించుము మరియు పోలేనలను ముందరికి తాకేము. పరనం 20 ఇమ్మ వరకు బయటకు వచ్చినట్లయితే అప్పుడు నిరోధకం ఉత్తమంగా ఉంటుంది. లేకపోతే, అప్పుడు మీరు దాన్ని భర్తీ చేయాలి.

Step 6; Check and Clean Contacts

Another problem that is associated with older electric rice cooker appliances is that the switch contacts can become dirty or corrode. When this happens they will not allow a solid current to flow when the switch is pressed to start the cooker. With the base removed, check the contact areas. Check to see if they are burned. If so, you will need to replace these contacts. If not, then use some electrical contact cleaner and a clean rag.

దశ 6; కాంటాక్ట్స్ తనిఖీ మరియు క్లింప్ పాత ఎలక్ట్రిక్ బియ్యం కుక్కర్ ఉపకరణాలతో సంబంధం ఉన్న మరో సమస్య, స్విచ్ పరిచయాలు మరికిగా లేదా కర్ఫెంట్ మారగలవు. ఇది జరిగేటప్పుడు వారు కుక్కర్ నడిపేందుకు సిప్పచ్ నొక్కినప్పుడు ఘన కరెంట్ ప్రవాహాన్ని అనుమతించరు. బేస్ తోలగించబడి, సంప్రదింపు పొరాంతాలను తనిఖీ చేయండి. వారు బూడిద చేయబడతారో లేదో తనిఖీ చేయండి. అలా అయితే, మీరు ఈ పరిచయాలను భర్తీ చేయాలి. లేకపోతే, అప్పుడు కొన్ని విద్యుత్ పరిచయం క్లింప్ మరియు ఒక క్లింప్ రాగ్ ఉపయోగించండి.

Step 7: Move Contacts

If you notice that the contacts are not touching when you press the switch, you can fix this by using a small screwdriver and moving the contact closer to the switch.

దశ 7: పరిచయాలను తరలించండి మీరు స్విచ్ నొక్కినప్పుడు పరిచయాలను తాకడం లేదని మీరు గమనించినట్లయితే, మీరు చిన్న ప్రూగుదైవర్లు

ఉపయోగించి మరియు స్విచ్చు దగ్గరగా ఉన్న పరిచయాన్ని కదిలించడం ద్వారా దీనిని పరిషురించవచ్చు.

Step 8: Replace Components

With the inside pieces either replaced, or cleaned, you can put the electric rice cooker back together. Make sure that the power cord is not pinched and that all wires are put back into their original position. Screw the base back on and replace the bowl and cover. Make a batch of rice to make sure it works correctly.

దశ 8: భాగాలు పునఃష్టాపించుము లోపల ముక్కలు గాని భర్తీ, లేదా శుభ్రం, మీరు కలిసి తీరిగి విద్యుత్ బియ్యం కుక్కర్ ఉంచవచ్చు. పవర్ తీరాడు పించ్ చేయబడలేదని మరియు అన్ని తీగలు వారి అసలు షానానికి తీరిగి వస్తాయని నిర్ధారించుకోండి. తీరిగి బేస్ మేకు మరియు గిన్నె మరియు కవర్ షానంలో. ఇది సరిగ్గా పనిచేస్తుందని నిర్ధారించడానికి బియ్యం బ్యాచ్చి తయారు చేయండి.

Mixer Grinder మిక్సర్ గీరైండర్

VARIOUS PARTS & FUNCTIONS OF MIXER/GRINDER, SPEED CONTROL CIRCUIT & AUTOMATIC OVER LOAD PROTECTOR

మిక్సర్ / గీరిండర్, SPEED నియంత్రణ సర్క్యూట్ మర్కెట్ మేటిక్ ఒవర్ లోడ్ ఎంప్యూషన్ యొక్క వివిధ భాగాలు & విధులు

A mixer grinder is a very useful domestic appliance of the kitchen and is used to grind fruits, nuts, vegetables etc and to prepare delicious drinks like milk shakes. Dry grinding of spices, cereals, pulses, seeds, dry fruits etc and wet grinding of garlic, ginger, onion, vegetables etc are also done in mixer grinders. There are mixture grinders for mincing meat. Hotels and restaurants use high capacity mixer grinders. Different types of mixer grinders are also known as Food processor, juicer and grinder, mixi, liquidizer etc.

మిక్సర్ గీరైండర్ వంటగది యొక్క చాలా ఉపయోగకరమైన దేశీయ ఉపకరణం మరియు ఇది పండ్లు, కాయలు, కూరగాయలు మొదలైనవి మరియు పాలు వణికు వంటి రుచికరమైన పాసేయాలను తయారు చేయడానికి ఉపయోగిస్తారు. మనాలా దినుసులు, తృపథినాయలు, పప్పు ధాన్యాలు, విత్తనాలు, పొడి పండ్లు తదితరాలు, వెల్లుల్లి, అల్లం, ఉల్లిపాయ, కూరగాయలు తదితరాలకు మిక్సర్ గీరిష్టర్లు కూడా తయారు చేస్తారు. మాంసపు మాంసం కోసం మిశ్రమం గీరైండర్ లు ఉన్నాయి. పేశాటణు మరియు రెషారెంట్లు అధిక సామర్థ్య మిక్సర్ గీరైండర్లను ఉపయోగిస్తాయి. వివిధ రకాల మిక్సర్ గీరిష్టర్లు ఆహార ప్రాసెసర్, జూసీర్ మరియు గీరైండర్, పుడ్ గీరైండర్, మిక్సి, లిక్షిజెజర్ మొదలైనవి.

Figure 15.1: Mixer Grinder

Numerous models of different capacities from various manufacturers are available. Now-a-days efficient models with attractive getup and added features are available and they make less noise and vibration compared to older models. Domestic mixer grinders work on 220 volt AC and commonly have power rating between 500 watt to 1.5 kW. Typical values are 500 watt, 750 watt, 1.1 kW etc. Maximum speed of 18000 to 20000 RPM is common. The main parts of a basic mixer grinder are:

1. Electric motor
2. Speed control switch
3. Overload protection and reset switch
4. Coupling
5. Jars and blades
6. Body
7. Accessories

వివిధ తయారీదారుల నుండి వివిధ సామర్థ్యాలకు చెందిన అనేక నమూనాలు అందుబాటులో ఉన్నాయి. ఆకర్షణీయమైన గెట్టార్స్ మరియు జోడించిన లక్షణాలతో ఇప్పుడు ఒక రోజు సమర్థవంతమైన నమూనాలు అందుబాటులో ఉన్నాయి మరియు వారు పాత మోడల్లతో పోలిస్తే తక్కువ శబ్దం మరియు కదలికను చేస్తాయి. డోమెస్టిక్ మిక్సర్ గీర్రెండర్ 220 వోల్ట్ ఎసిపై పని చేస్తుంది మరియు సాధారణంగా 500 వాట్ నుండి 1.5 kW మధ్య పవర్ రేటింగ్ ఉంటుంది. విలక్షణ విలువలు 500 వాట్, 750 వాట్, 1.1 కె.డబ్లు మొదలైనవి. 18000 నుంచి 20000 RPM గరిష్ట వేగం సాధారణం. పీరాధమిక మిక్సర్ గీర్రెండర్ యొక్క ప్రధాన భాగాలు:

1. ఎలక్ట్రిక్ మోటార్
2. సీఎం కంటర్లర్ స్విచ్
3. ఒవల్టేజ్ రక్షణ మరియు రీసెట్ స్విచ్
4. కలుపుట
5. జాడి మరియు భేడ్లు
6. శరీర
7. యాకెసరీస్

Rotor or armature is also made of laminated steel

రోటర్ లేదా ఆర్మెటర్ కూడా లామినేచెడ్ ఉక్కుతో తయారు చేయబడుతుంది

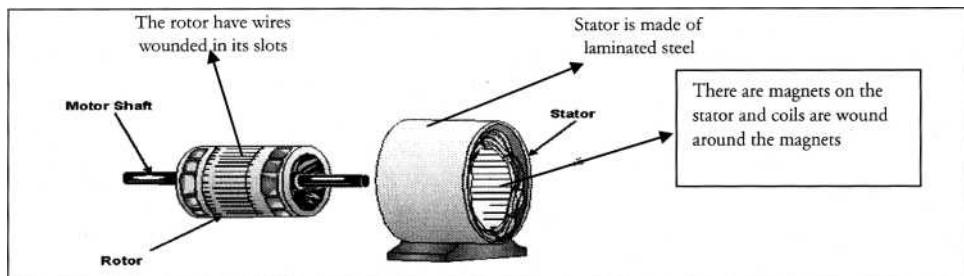
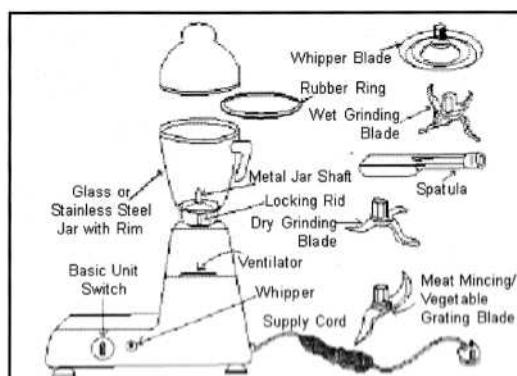


Figure 15.2: Motor

The motor used in mixer grinder is generally a universal motor. The motor has stator and rotor. The stator is made of laminated steel. There are poles on the stator. Usually two poles are there. Field coils are wound on each pole. The rotor, also called armature is also made of laminated steel, has slots and is tightly fitted with the shaft. Rotor windings are placed on rotor slots. Ends of rotor windings are permanently connected to commutator segments. Commutator segments are around the shaft on one side. There are two brushes that make contact with two commutator segments at a particular instant. As shaft rotates, the commutator segments that come in contact with the brushes also change. Field windings in the stator and rotor windings are connected in series through the rotor commutator. Universal motor can run on both AC and DC. They have high starting torque and speed.


మిక్రో రీలైండ్ డ్రో ఉపయోగించే మోటార్ సాధారణంగా సార్వతరిక మోటార్. మోటార్ షైటర్ మరియు రోటర్ ఉంది. షైటర్ లామినేచెడ్ ఉక్కు తయారు చేస్తారు. షైటర్ స్టంభాలు ఉన్నాయి. సాధారణంగా రెండు స్టంభాలు ఉన్నాయి. ఫీల్డ్ కాయల్స్ ప్రతి పోల్ మీద గాయమవుతాయి. అర్మెటర్ అని కూడా పిలిచే రోటర్ కూడా లామినేచెడ్ ఉక్కుతో తయారు చేయబడుతుంది, స్టాటిస్ ఉన్నాయి మరియు పోల్స్ కరినంగా అమర్చబడి ఉంటుంది. రోటర్ గాలులు రోటర్ స్టాటిస్ ఉంచబడతాయి. రోటర్ windings యొక్క ముగింపులు శాశ్వతంగా commutator విభాగాలు అనుసంధానించబడి ఉంటాయి. కమ్యూటర్ విభాగాలు ఒక వైపు పొష్ట్ చుట్టూ ఉన్నాయి. రెండు ప్రత్యేక బీరాంచీలు రెండు కండక్టర్ విభాగాలను ఒక ప్రత్యేక సందర్భంలో సంప్రదించేలా ఉన్నాయి. పొష్ట్ రోటెట్ చేస్తున్నప్పుడు, బ్రిఫ్లు కలిసే కమాచేటర్ విభాగాలు కూడా మారతాయి. షైటర్ మరియు రోటర్ మూనివేతల్లోని ఫీల్డ్ విండింగ్లు రోటర్ కమ్యూటర్ ద్వారా వరుసలో ఉంటాయి. యూనివర్సల్

మోటార్ AC మరియు DC రెండింటిలో అయినా పనిచేయగలదు. వారు అధిక టార్మ్సు మరియు వేగం కలిగి.

Figure 19.3: Part of Mixer Grinder

The motor is fitted to the base unit with its shaft in vertical position. A top bowl contains the couplings that are tightly fitted on the top of the shaft where jars with blades are placed. The base of top bowl is sealed by rubber gaskets and is made leak proof. Couplings are made of high quality food grade plastic or polycarbonate materials.

The speed control switch is generally a three speed switch. Low, medium or high speed can be selected by rotating the knob of the switch. There is overload protection for the motor. If the motor gets overloaded it automatically gets switched off. An overload reset switch is

provided. Once the motor gets switched off because of overloading, the motor can again be started after pressing the overload reset switch.

మోటార్ నిలువు ప్రానంలో దాని ప్రాప్తి బేస్ యూనిట్ అమర్చన ఉంది. ఒక టార్మ్సు గిన్నెలో కండువాలతో కూడిన జాడిని ఉంచే ప్రాప్తి పైభాగంలో అమర్చన కప్పలను కలిగి ఉంటుంది. టార్మ్సు గిన్నె యొక్క రబ్బరు రబ్బరు జాకెట్ల ద్వారా మూసివేయబడుతుంది మరియు లీక్ రుజువు తయారు చేయబడుతుంది కపిల్గులు అధిక నాణ్యమైన ఆపోర్ గీరేడ్ ప్లాష్టిక్ లేదా పాలికార్బోనేట్ పదార్థాలతో తయారు చేయబడతాయి. వేగం నియంత్రణ స్విచ్ సాధారణంగా మూడు వేగం స్విచ్. స్విచ్ యొక్క గుండ్రంగా తిరుగుతున్నప్పుడు తక్కువ, మధ్యపు లేదా అధిక వేగం ఎంచుకోవచ్చు. మోటార్ కోసం ఒవర్లోడ్ రక్షణ ఉంది. మోటారు ఒవర్లోడ్ కావాలనుకుంచే స్వయంచాలకంగా స్విచ్ ఆఫ్ అవుతుంది. ఒవర్లోడ్ రీసెట్ స్విచ్ అందించబడింది. ఒవర్లోడింగ్ కారణంగా మోటారు స్విచ్ ఆఫ్ అవుతుండగా, ఒవర్లోడ్ రీసెట్ స్విచ్ నోక్కితే మోటారు మరలా వీరారంభించవచ్చు.

Jars are made of stainless steel with transparent covers made of polycarbonate material. Coupling is at the bottom and blades are fitted inside. Base is sealed by rubber gaskets in such a way that even a drop of water can not leak through the base. The body is made of good quality plastic material, is insulated and shock proof. Accessories include jars of different capacity, blades of different types for dry grinding, wet grinding, vegetable mincing etc, rubber ring, spatula, power cord etc.

The jars are filled with food material to maximum two thirds of the jar volume and then placed on the top bowl of the mixer grinder. Proper coupling of the jar is ensured and jar cover is put on the jar. During operation jar should be kept securely held by holding the jar cover.

Common problems are defects in the motor or switch, worn out brushes, broken or loose blades, leak in top bowl or jars etc. The mixer grinder should not be continuously run for long periods. There should be a gap of minimum one minute between two successive switching on. The motor must be off and the shaft must be stationary at the instants of placing or removing the grinder or the jar.

పలకలోపల పదార్థంతో తయారు చేయబడిన పారదర్శక కవర్లు కలిగిన జాడి షైల్యనెన్ ఫీల్ట్ తయారు చేయబడుతుంది. కలుపుట దిగువన ఉంది మరియు భేడ్సు లోపల అమర్చబడి ఉంటాయి. బేస్ కూడా రబ్బరు జాకెట్లు ద్వారా మూసివేయబడుతుంది, తద్వారా నీటిలో ఒక టీరాప్ ఆధారం ద్వారా లీక్ చేయలేదు. శరీర మంచి నాణ్యత షాప్లీక్ పదార్థం తయారు, ఇన్నులేట్ మరియు ప్యాక్ రుజువు ఉంది. ఉపకరణాలు వివిధ సామగ్యం యొక్క జాడి, పొడి గిరొండింగ్ కోసం వివిధ రకాల భేడ్సు, తడి గిరొండింగ్, కూరగాయల mincing etc, రబ్బరు రింగ్, గరిచెలాంటి, పవర్ కార్బ్ యొదలైనవి ఉన్నాయి జాడి పరిమాణం గరిష్టంగా మూడింట రెండు వంతుల వరకు ఆహార పదార్థంతో నిండి ఉంటుంది, తరువాత మిక్రో గీరైండర్ యొక్క టాప్ గిన్నెలో ఉంచుతారు. కూజా సరైన కలపడం నిర్ధారిస్తుంది మరియు కూజా పై కూర్చుని ఉంది. ఆపరేషన్ కూజాను కూర్చుని జూగ్రత్తగా ఉండాలి.

సామాన్య సమస్యలు మోటారు లేదా స్పిచ్ట్ లోపాలుగా ఉంటాయి, బ్రిఫ్సు, విరిగిన లేదా వదులుగా ఉన్న భేడ్సు ధరిస్తారు, టాప్ గిన్నె లేదా జాడిలో లీక్. మిక్రో గీరైండర్ నిరంతరంగా దీర్ఘకాలం కొనసాగించరాదు. రెండు వరుస స్పిచ్టు మధ్య కనీసం ఒక నిమిషం ఖాళీ ఉండాలి. మోటార్ ఆఫ్ ఉండాలి మరియు ప్యాప్ గీరైండర్ లేదా జార్ ఉంచడం లేదా తోలగించడం యొక్క ఇన్సాప్ట్ వద్ద ఫీరంగా ఉండాలి.

Questions:

1. What type of motors is generally used in a Mixture grinder?
2. Mention two important features of the motor of a mixer grinder.
3. What is the function of overload reset switch in a mixer grinder?
4. State typical values of maximum speed of a mixer grinder motor.
5. How the field winding and rotor winding connected in the universal motor of a mixer grinder?

ప్రశ్నలు:

1. సాధారణంగా మిశ్రమం గీరైండర్లో ఏ రకం మోటార్లు ఉపయోగిస్తారు?
2. ఒక మిక్సర్ గీరైండర్ మోటర్ యొక్క రెండు ముఖ్యమైన లక్షణాలను వేర్చినండి.
3. మిక్సర్ గీరైండర్లో ఒవర్లోడ్ రీసెట్ స్ప్యాచ్ యొక్క ఫంక్షన్ ఏమిటి? 4. మిక్సర్ గీరైండర్ మోటర్ యొక్క గరిష్ట వేగం యొక్క సాధారణ విలక్షణ విలువలు.
5. మిక్సర్ గీరైండర్ యూనివర్సల్ మోటర్లో కనెక్ట్ చేయబడిన ఫీల్డ్ వైండింగ్ మరియు రోటర్ మూసివేయడం ఎలా?